|
Cassardo, C., & Andreoli, V. (2019). On the Representativeness of UTOPIA Land Surface Model for Creating a Database of Surface Layer, Vegetation and Soil Variables in Piedmont Vineyards, Italy. Applied Sciences-Basel, 9(18), 3880.
Abstract: The main aim of the paper is to show how, and how many, simulations carried out using the Land Surface Model UTOPIA (University of TOrino model of land Process Interaction with Atmosphere) are representative of the micro-meteorological conditions and exchange processes at the atmosphere/biosphere interface, with a particular focus on heat and hydrologic transfers, over an area of the Piemonte (Piedmont) region, NW Italy, which is characterized by the presence of many vineyards. Another equally important aim is to understand how much the quality of the simulation outputs was influenced by the input data, whose measurements are often unavailable for long periods over country areas at an hourly basis. Three types of forcing data were used: observations from an experimental campaign carried out during the 2008, 2009, and 2010 vegetative seasons in three vineyards, and values extracted from the freely available Global Land Data Assimilation System (GLDAS, versions 2.0 and 2.1). Since GLDAS also contains the outputs of the simulations performed using the Land Surface Model NOAH, an additional intercomparison between the two models, UTOPIA and NOAH, both driven by the same GLDAS datasets, was performed. The intercomparisons were performed on the following micro-meteorological variables: net radiation, sensible and latent turbulent heat fluxes, and temperature and humidity of soil. The results of this study indicate that the methodology of employing land surface models driven by a gridded database to evaluate variables of micro-meteorological and agronomic interest in the absence of observations is suitable and gives satisfactory results, with uncertainties comparable to measurement errors, thus, allowing us to also evaluate some time trends. The comparison between GLDAS2.0 and GLDAS2.1 indicates that the latter generally produces simulation outputs more similar to the observations than the former, using both UTOPIA and NOAH models.
|
|
|
Ferrise, R., Toscano, P., Pasqui, M., Moriondo, M., Primicerio, J., Semenov, M. A., et al. (2015). Monthly-to-seasonal predictions of durum wheat yield over the Mediterranean Basin. Clim. Res., 65, 7–21.
Abstract: Uncertainty in weather conditions for the forthcoming growing season influences farmers’ decisions, based on their experience of the past climate, regarding the reduction of agricultural risk. Early within-season predictions of grain yield can represent a great opportunity for farmers to improve their management decisions and potentially increase yield and reduce potential risk. This study assessed 3 methods of within-season predictions of durum wheat yield at 10 sites across the Mediterranean Basin. To assess the value of within-season predictions, the model SiriusQuality2 was used to calculate wheat yields over a 9 yr period. Initially, the model was run with observed daily weather to obtain the reference yields. Then, yield predictions were calculated at a monthly time step, starting from 6 mo before harvest, by feeding the model with observed weather from the beginning of the growing season until a specific date and then with synthetic weather constructed using the 3 methods, historical, analogue or empirical, until the end of the growing season. The results showed that it is possible to predict durum wheat yield over the Mediterranean Basin with an accuracy of normalized root means squared error of <20%, from 5 to 6 mo earlier for the historical and empirical methods and 3 mo earlier for the analogue method. Overall, the historical method performed better than the others. Nonetheless, the analogue and empirical methods provided better estimations for low-yielding and high-yielding years, thus indicating great potential to provide more accurate predictions for years that deviate from average conditions.
|
|
|
Gomara, I., Bellocchi, G., Martin, R., Rodriguez-Fonseca, B., & Ruiz-Ramos, M. (2020). Influence of climate variability on the potential forage production of a mown permanent grassland in the French Massif Central. Agricultural and Forest Meteorology, 280, 107768.
Abstract: Climate Services (CS) provide support to decision makers across socio-economic sectors. In the agricultural sector, one of the most important CS applications is to provide timely and accurate yield forecasts based on climate prediction. In this study, the Pasture Simulation model (PaSim) was used to simulate, for the period 1959–2015, the forage production of a mown grassland system (Laqueuille, Massif Central of France) under different management conditions, with meteorological inputs extracted from the SAFRAN atmospheric database. The aim was to generate purely climate-dependent timeseries of optimal forage production, a variable that was maximized by brighter and warmer weather conditions at the grassland. A long-term increase was observed in simulated forage yield, with the 1995–2015 average being 29% higher than the 1959–1979 average. Such increase seems consistent with observed rising trends in temperature and CO2, and multi-decadal changes in incident solar radiation. At interannual timescales, sea surface temperature anomalies of the Mediterranean (MED), Tropical North Atlantic (TNA), equatorial Pacific (El Niño Southern Oscillation) and the North Atlantic Oscillation (NAO) index were found robustly correlated with annual forage yield values. Relying only on climatic predictors, we developed a stepwise statistical multi-regression model with leave-one-out cross-validation. Under specific management conditions (e.g., three annual cuts) and from one to five months in advance, the generated model successfully provided a p-value<0.01 in correlation (t-test), a root mean square error percentage (%RMSE) of 14.6% and a 71.43% hit rate predicting above/below average years in terms of forage yield collection. This is the first modeling study on the possible role of large-scale oceanic–atmospheric teleconnections in driving forage production in Europe. As such, it provides a useful springboard to implement a grassland seasonal forecasting system in this continent.
|
|
|
Ruiz-Ramos, M., Rodriguez, A., Dosio, A., Goodess, C. M., Harpham, C., Minguez, M. I., et al. (2016). Comparing correction methods of RCM outputs for improving crop impact projections in the Iberian Peninsula for 21st century. Clim. Change, 134(1-2), 283–297.
Abstract: Assessment of climate change impacts on crops in regions of complex orography such as the Iberian Peninsula (IP) requires climate model output which is able to describe accurately the observed climate. The high resolution of output provided by Regional Climate Models (RCMs) is expected to be a suitable tool to describe regional and local climatic features, although their simulation results may still present biases. For these reasons, we compared several post-processing methods to correct or reduce the biases of RCM simulations from the ENSEMBLES project for the IP. The bias-corrected datasets were also evaluated in terms of their applicability and consequences in improving the results of a crop model to simulate maize growth and development at two IP locations, using this crop as a reference for summer cropping systems in the region. The use of bias-corrected climate runs improved crop phenology and yield simulation overall and reduced the inter-model variability and thus the uncertainty. The number of observational stations underlying each reference observational dataset used to correct the bias affected the correction performance. Although no single technique showed to be the best one, some methods proved to be more adequate for small initial biases, while others were useful when initial biases were so large as to prevent data application for impact studies. An initial evaluation of the climate data, the bias correction/reduction method and the consequences for impact assessment would be needed to design the most robust, reduced uncertainty ensemble for a specific combination of location, crop, and crop management.
|
|
|
Rusu, T., & Moraru, P. I. (2015). Impact of climate change on crop land and technological recommendations for the main crops in Transylvanian Plain, Romania. Romanian Agricultural Research, 32, 103–111.
Abstract: The Transylvanian Plain (TP) is an important agricultural production area of Romania that is included among the areas with the lowest potential of adapting to climate changes in Europe. Thermal and hydric regime monitoring is necessary to identify and implement measures of adaptation to the impacts of climate change. Soil moisture and temperature regimes were evaluated using a set of 20 data logging stations positioned throughout the plain. Each station stores electronic data regarding ground temperature at 3 depths (10, 30, 50 cm), humidity at a depth of 10 cm, air temperature (at 1 m) and precipitation. For agricultural crops, the periods of drought and extreme temperatures require specific measures of adaptation to climate changes. During the growing season of crops in the spring (April – October) in the south-eastern, southern, and eastern escarpments, precipitation decreased by 43.8 mm, the air temperature increased by 0.37 degrees C, and the ground temperature increased by 1.91 degrees C at a depth of 10 cm, 2.22 degrees C at a depth of 20 cm and 2.43 degrees C at a depth of 30 cm compared with values recorded for the northern, north-western or western escarpments. Water requirements were ensured within an optimal time frame for 58.8-62.1% of the spring row crop growth period, with irrigation being necessary to guarantee the optimum production potential. The biologically active temperature recorded in the TP demonstrates the need to renew the division of the crop areas reported in the literature.
|
|