|
Eitzinger, J., Thaler, S., Schmid, E., Strauss, F., Ferrise, R., Moriondo, M., et al. (2013). Sensitivities of crop models to extreme weather conditions during flowering period demonstrated for maize and winter wheat in Austria. J. Agric. Sci., 151(6), 813–835.
Abstract: The objective of the present study was to compare the performance of seven different, widely applied crop models in predicting heat and drought stress effects. The study was part of a recent suite of model inter-comparisons initiated at European level and constitutes a component that has been lacking in the analysis of sources of uncertainties in crop models used to study the impacts of climate change. There was a specific focus on the sensitivity of models for winter wheat and maize to extreme weather conditions (heat and drought) during the short but critical period of 2 weeks after the start of flowering. Two locations in Austria, representing different agro-climatic zones and soil conditions, were included in the simulations over 2 years, 2003 and 2004, exhibiting contrasting weather conditions. In addition, soil management was modified at both sites by following either ploughing or minimum tillage. Since no comprehensive field experimental data sets were available, a relative comparison of simulated grain yields and soil moisture contents under defined weather scenarios with modified temperatures and precipitation was performed for a 2-week period after flowering. The results may help to reduce the uncertainty of simulated crop yields to extreme weather conditions through better understanding of the models’ behaviour. Although the crop models considered (DSSAT, EPIC, WOFOST, AQUACROP, FASSET, HERMES and CROPSYST) mostly showed similar trends in simulated grain yields for the different weather scenarios, it was obvious that heat and drought stress caused by changes in temperature and/or precipitation for a short period of 2 weeks resulted in different grain yields simulated by different models. The present study also revealed that the models responded differently to changes in soil tillage practices, which affected soil water storage capacity.
|
|
|
Hlavinka, P., Trnka, M., Kersebaum, K. C., Cermák, P., Pohanková, E., Orság, M., et al. (2014). Modelling of yields and soil nitrogen dynamics for crop rotations by HERMES under different climate and soil conditions in the Czech Republic. J. Agric. Sci., 152(02), 188–204.
Abstract: The crop growth model HERMES was used to model crop rotation cycles at 12 experimental sites in the Czech Republic. A wide range of crops (spring and winter barley, winter wheat, maize, potatoes, sugar beet, winter rape, oats, alfalfa and grass), cultivated between 1981 and 2009 under various soil and climatic conditions, were included. The model was able to estimate the yields of field crop rotations at a reasonable level, with an index of agreement (IA) ranging from 0.82 to 0.96 for the calibration database (the median coefficient of determination (R-2) was 0.71), while IA for verification varied from 0.62 to 0.93 (median R-2 was 0.78). Grass yields were also estimated at a reasonable level of accuracy. The estimates were less accurate for the above-ground biomass at harvest (the medians for IA were 0.76 and 0.72 for calibration and verification, respectively, and analogous medians of R-2 were 0.50 and 0.49). The soil mineral nitrogen (N) content under the field crops was simulated with good precision, with the IA ranging from 0.49 to 0.74 for calibration and from 0.43 to 0.68 for verification. Generally, the soil mineral N was underestimated, and more accurate results were achieved at locations with intensive fertilization. Simulated yields, soil N, water and organic carbon (C) contents were compared with long-term field measurements at Ne. mc. ice, located within the fertile Moravian lowland. At this station, all of the observed parameters were reproduced with a reasonable level of accuracy. In the case of the organic C content, HERMES reproduced a decrease ranging from c. 85 to 77 tonnes (t)/ha (for the 0-0.3 m soil layer) between the years 1980 and 2007. In spite of its relatively simple approach and restricted input data, HERMES was proven to be robust across various conditions, which is a precondition for its future use for both theoretical and practical purposes.
|
|
|
Schönhart, M., Mitter, H., Schmid, E., Heinrich, G., & Gobiet, A. (2014). Integrated analysis of climate change impacts and adaptation measures in Austrian agriculture. German Journal of Agricultural Economics, 63(3), 156–176.
Abstract: An integrated modelling framework (IMF) has been developed and applied to analyse climate change impacts and the effectiveness of adaptation measures in Austrian agriculture. The IMF couples the crop rotation model CropRota, the bio-physical process model EPIC and the bottom-up economic land use model PASMA at regional level (NUTS-3) considering agri-environmental indicators. Four contrasting regional climate model (RCM) simulations represent climate change until 2050. The RCM simulations are applied to a baseline and three adaptation and policy scenarios. Climate change increases crop productivity on national average in the IMF. Changes in average gross margins at national level range from 0% to + 5% between the baseline and the three adaptation and policy scenarios. The impacts at NUTS-3 level range from -5% to + 7% between the baseline and the three adaptation and policy scenarios. Adaptation measures such as planting of winter cover crops, reduced tillage and irrigation are effective in reducing yield losses, increasing revenues, or in improving environmental states under climate change. Future research should account for extreme weather events in order to analyse whether average productivity gains at the aggregated level suffice to cover costs from expected higher climate variability.
|
|