|
Francone, C., Cassardo, C., Richiardone, R., & Confalonieri, R. (2012). Sensitivity Analysis and Investigation of the Behaviour of the UTOPIA Land-Surface Process Model: A Case Study for Vineyards in Northern Italy. Boundary-Layer Meteorology, 144(3), 419–430.
Abstract: We used sensitivity-analysis techniques to investigate the behaviour of the land-surface model UTOPIA while simulating the micrometeorology of a typical northern Italy vineyard (Vitis vinifera L.) under average climatic conditions. Sensitivity-analysis experiments were performed by sampling the vegetation parameter hyperspace using the Morris method and quantifying the parameter relevance across a wide range of soil conditions. This method was used since it proved its suitability for models with high computational time or with a large number of parameters, in a variety of studies performed on different types of biophysical models. The impact of input variability was estimated on reference model variables selected among energy (e.g. net radiation, sensible and latent heat fluxes) and hydrological (e.g. soilmoisture, surface runoff, drainage) budget components. Maximum vegetation cover and maximum leaf area index were ranked as the most relevant parameters, with sensitivity indices exceeding the remaining parameters by about one order of magnitude. Soil variability had a high impact on the relevance of most of the vegetation parameters: coefficients of variation calculated on the sensitivity indices estimated for the different soils often exceeded 100 %. The only exceptions were represented by maximum vegetation cover and maximum leaf area index, which showed a low variability in sensitivity indices while changing soil type, and confirmed their key role in affecting model results.
|
|
|
Lindeskog, M., Arneth, A., Bondeau, A., Waha, K., Seaquist, J., Olin, S., et al. (2013). Implications of accounting for land use in simulations of ecosystem carbon cycling in Africa. Earth System Dynamics, 4(2), 385–407.
Abstract: Dynamic global vegetation models (DGVMs) are important tools for modelling impacts of global change on ecosystem services. However, most models do not take full account of human land management and land use and land cover changes (LULCCs). We integrated croplands and pasture and their management and natural vegetation recovery and succession following cropland abandonment into the LPJ-GUESS DGVM. The revised model was applied to Africa as a case study to investigate the implications of accounting for land use on net ecosystem carbon balance (NECB) and the skill of the model in describing agricultural production and reproducing trends and patterns in vegetation structure and function. The seasonality of modelled monthly fraction of absorbed photosynthetically active radiation (FPAR) was shown to agree well with satellite-inferred normalised difference vegetation index (NDVI). In regions with a large proportion of cropland, the managed land addition improved the FPAR vs. NDVI fit significantly. Modelled 1991-1995 average yields for the seven most important African crops, representing potential optimal yields limited only by climate forcings, were generally higher than reported FAO yields by a factor of 2-6, similar to previous yield gap estimates. Modelled inter-annual yield variations during 1971-2005 generally agreed well with FAO statistics, especially in regions with pronounced climate seasonality. Modelled land-atmosphere carbon fluxes for Africa associated with land use change (0.07 PgC yr(-1) release to the atmosphere for the 1980s) agreed well with previous estimates. Cropland management options (residue removal, grass as cover crop) were shown to be important to the land-atmosphere carbon flux for the 20th century.
|
|
|
Park, S. K., Sungmin, O., & Cassardo, C. (2017). Soil temperature response in Korea to a changing climate using a land surface model. Asia-Pacific Journal of Atmospheric Sciences, 53(4), 457–470.
Abstract: The land surface processes play an important role in weather and climate systems through its regulation of radiation, heat, water and momentum fluxes. Soil temperature (ST) is one of the most important parameters in the land surface processes; however, there are few extensive measurements of ST with a long time series in the world. According to the CLImatology of Parameters at the Surface (CLIPS) methodology, the output of a trusted Soil-Vegetation- Atmosphere Transfer (SVAT) scheme can be utilized instead of observations to investigate the regional climate of interest. In this study, ST in South Korea is estimated in a view of future climate using the output from a trusted SVAT scheme – the University of TOrino model of land Process Interaction with Atmosphere (UTOPIA), which is driven by a regional climate model. Here characteristic changes in ST are analyzed under the IPCC A2 future climate for 2046-2055 and 2091-2100, and are compared with those under the reference climate for 1996-2005. The UTOPIA results were validated using the observed ST in the reference climate, and the model proved to produce reasonable ST in South Korea. The UTOPIA simulations indicate that ST increases due to environmental change, especially in air temperature (AT), in the future climate. The increment of ST is proportional to that of AT except for winter. In wintertime, the ST variations are different from region to region mainly due to variations in snow cover, which keeps ST from significant changes by the climate change.
|
|