|
Hoffmann, H., Zhao, G., van Bussel, L. G. J., Enders, A., Specka, X., Sosa, C., et al. (2015). Variability of effects of spatial climate data aggregation on regional yield simulation by crop models. Clim. Res., 65, 53–69.
Abstract: Field-scale crop models are often applied at spatial resolutions coarser than that of the arable field. However, little is known about the response of the models to spatially aggregated climate input data and why these responses can differ across models. Depending on the model, regional yield estimates from large-scale simulations may be biased, compared to simulations with high-resolution input data. We evaluated this so-called aggregation effect for 13 crop models for the region of North Rhine-Westphalia in Germany. The models were supplied with climate data of 1 km resolution and spatial aggregates of up to 100 km resolution raster. The models were used with 2 crops (winter wheat and silage maize) and 3 production situations (potential, water-limited and nitrogen-water-limited growth) to improve the understanding of errors in model simulations related to data aggregation and possible interactions with the model structure. The most important climate variables identified in determining the model-specific input data aggregation on simulated yields were mainly related to changes in radiation (wheat) and temperature (maize). Additionally, aggregation effects were systematic, regardless of the extent of the effect. Climate input data aggregation changed the mean simulated regional yield by up to 0.2 t ha(-1), whereas simulated yields from single years and models differed considerably, depending on the data aggregation. This implies that large-scale crop yield simulations are robust against climate data aggregation. However, large-scale simulations can be systematically biased when being evaluated at higher temporal or spatial resolution depending on the model and its parameterization.
|
|
|
Wallach, D., Nissanka, S. P., Karunaratne, A. S., Weerakoon, W. M. W., Thorburn, P. J., Boote, K. J., et al. (2016). Accounting for both parameter and model structure uncertainty in crop model predictions of phenology: A case study on rice. European Journal of Agronomy, .
Abstract: We consider predictions of the impact of climate warming on rice development times in Sri Lanka. The major emphasis is on the uncertainty of the predictions, and in particular on the estimation of mean squared error of prediction. Three contributions to mean squared error are considered. The first is parameter uncertainty that results from model calibration. To take proper account of the complex data structure, generalized least squares is used to estimate the parameters and the variance-covariance matrix of the parameter estimators. The second contribution is model structure uncertainty, which we estimate using two different models. An ANOVA analysis is used to separate the contributions of parameter and model uncertainty to mean squared error. The third contribution is model error, which is estimated using hindcasts. Mean squared error of prediction of time from emergence to maturity, for baseline +2 °C, is estimated as 108 days2, with model error contributing 86 days2, followed by model structure uncertainty which contributes 15 days2 and parameter uncertainty which contributes 7 days2. We also show how prediction uncertainty is reduced if prediction concerns development time averaged over years, or the difference in development time between baseline and warmer temperatures.
|
|
|
Xiao, D. P., & Tao, F. L. (2016). Contributions of cultivar shift, management practice and climate change to maize yield in North China Plain in 1981-2009. International Journal of Biometeorology, 60(7), 1111–1122.
Abstract: The impact of climate change on crop yield is compounded by cultivar shifts and agronomic management practices. To determine the relative contributions of climate change, cultivar shift, and management practice to changes in maize (Zea mays L.) yield in the past three decades, detailed field data for 1981-2009 from four representative experimental stations in North China Plain (NCP) were analyzed via model simulation. The four representative experimental stations are geographically and climatologically different, represent the typical cropping system in the study area, and have more complete weather/crop records for the period of 1981-2009. The results showed that while the shift from traditional to modern cultivar increased yield by 23.9-40.3 %, new fertilizer management increased yield by 3.3-8.6 %. However, the trends in climate variables for 1981-2009 reduced maize yield by 15-30 % in the study area. Among the main climate variables, solar radiation had the largest effect on maize yield, followed by temperature and then precipitation. While a significant decline in solar radiation in 1981-2009 (maybe due to air pollution) reduced yield by 12-24 %, a significant increase in temperature reduced yield by 3-9 %. In contrast, a non-significant increase in precipitation during the maize growth period increased yield by 0.9-3 % at three of the four investigated stations. However, a decline in precipitation reduced yield by 3 % in the remaining station. The study revealed that although the shift from traditional to modern cultivars and agronomic management practices contributed most to the increase in maize yield, the negative impact of climate change was large enough to offset 46-67 % of the trend in the observed yields in the past three decades in NCP. The reduction in solar radiation, especially in the most critical period of maize growth, limited the process of photosynthesis and thereby further reduced maize yield.
|
|
|
Zhao, G., Hoffmann, H., Yeluripati, J., Xenia, S., Nendel, C., Coucheney, E., et al. (2016). Evaluating the precision of eight spatial sampling schemes in estimating regional means of simulated yield for two crops. Env. Model. Softw., 80, 100–112.
Abstract: We compared the precision of simple random sampling (SimRS) and seven types of stratified random sampling (StrRS) schemes in estimating regional mean of water-limited yields for two crops (winter wheat and silage maize) that were simulated by fourteen crop models. We found that the precision gains of StrRS varied considerably across stratification methods and crop models. Precision gains for compact geographical stratification were positive, stable and consistent across crop models. Stratification with soil water holding capacity had very high precision gains for twelve models, but resulted in negative gains for two models. Increasing the sample size monotonously decreased the sampling errors for all the sampling schemes. We conclude that compact geographical stratification can modestly but consistently improve the precision in estimating regional mean yields. Using the most influential environmental variable for stratification can notably improve the sampling precision, especially when the sensitivity behavior of a crop model is known.
|
|