|
Ewert, F., Rötter, R. P., Bindi, M., Webber, H., Trnka, M., Kersebaum, K. C., et al. (2015). Crop modelling for integrated assessment of risk to food production from climate change. Env. Model. Softw., 72, 287–303.
Abstract: The complexity of risks posed by climate change and possible adaptations for crop production has called for integrated assessment and modelling (IAM) approaches linking biophysical and economic models. This paper attempts to provide an overview of the present state of crop modelling to assess climate change risks to food production and to which extent crop models comply with IAM demands. Considerable progress has been made in modelling effects of climate variables, where crop models best satisfy IAM demands. Demands are partly satisfied for simulating commonly required assessment variables. However, progress on the number of simulated crops, uncertainty propagation related to model parameters and structure, adaptations and scaling are less advanced and lagging behind IAM demands. The limitations are considered substantial and apply to a different extent to all crop models. Overcoming these limitations will require joint efforts, and consideration of novel modelling approaches.
|
|
|
Kanellopoulos, A., Reidsma, P., Wolf, J., & van Ittersum, M. K. (2014). Assessing climate change and associated socio-economic scenarios for arable farming in the Netherlands: An application of benchmarking and bio-economic farm modelling. European Journal of Agronomy, 52, 69–80.
Abstract: Future farming systems are challenged to adapt to the changing socio-economic and bio-physical environment in order to remain competitive and to meet the increasing requirements for food and fibres. The scientific challenge is to evaluate the consequences of predefined scenarios, identify current “best” practices and explore future adaptation strategies at farm level. The objective of this article is to assess the impact of different climate change and socio-economic scenarios on arable farming systems in Flevoland (the Netherlands) and to explore possible adaptation strategies. Data Envelopment Analysis was used to identify these current “best” practices while bio-economic modelling was used to calculate a number of important economic and environmental indicators in scenarios for 2050. Relative differences between yields with and without climate change and technological change were simulated with a crop bio-physical model and used as a correction factors for the observed crop yields of current “best” practices. We demonstrated the capacity of the proposed methodology to explore multiple scenarios by analysing the importance of drivers of change, while accounting for variation between individual farms. It was found that farmers in Flevoland are in general technically efficient and a substantial share of the arable land is currently under profit maximization. We found that climate change increased productivity in all tested scenarios. However, the effects of different socio-economic scenarios (globalized and regionalized economies) on the economic and environmental performance of the farms were variable. Scenarios of a globalized economy where the prices of outputs were simulated to increase substantially might result in increased average gross margin and lower average (per ha) applications of crop protection and fertilizers. However, the effects might differ between different farm types. It was found that, the abolishment of sugar beet quota and changes of future prices of agricultural inputs and outputs in such socio-economic scenario (i.e. globalized economy) caused a decrease in gross margins of smaller (in terms of economic size) farms, while gross margin of larger farms increased. In scenarios where more regionalized economies and a moderate climate change are assumed, the future price ratios between inputs and outputs are shown to be the key factors for the viability of arable farms in our simulations. (C) 2013 Elsevier B.V. All rights reserved.
|
|
|
Mandryk, M., Reidsma, P., & van Ittersum, M. K. (2012). Scenarios of long-term farm structural change for application in climate change impact assessment. Landscape Ecol., 27(4), 509–527.
Abstract: Towards 2050, climate change is one of the possible drivers that will change the farming landscape, but market, policy and technological development may be at least equally important. In the last decade, many studies assessed impacts of climate change and specific adaptation strategies. However, adaptation to climate change must be considered in the context of other driving forces that will cause farms of the future to look differently from today’s farms. In this paper we use a historical analysis of the influence of different drivers on farm structure, complemented with literature and stakeholder consultations, to assess future structural change of farms in a region under different plausible futures. As climate change is one of the drivers considered, this study thus puts climate change impact and adaptation into the context of other drivers. The province of Flevoland in the north of The Netherlands was used as case study, with arable farming as the main activity. To account for the heterogeneity of farms and to indicate possible directions of farm structural change, a farm typology was developed. Trends in past developments in farm types were analyzed with data from the Dutch agricultural census. The historical analysis allowed to detect the relative importance of driving forces that contributed to farm structural changes. Simultaneously, scenario assumptions about changes in these driving forces elaborated at global and European levels, were downscaled for Flevoland, to regional and farm type level in order to project impacts of drivers on farm structural change towards 2050. Input from stakeholders was also used to detail the downscaled scenarios and to derive historical and future relationships between drivers and farm structural change. These downscaled scenarios and future driver-farm structural change relationships were used to derive quantitative estimations of farm structural change at regional and farm type level in Flevoland. In addition, stakeholder input was used to also derive images of future farms in Flevoland. The estimated farm structural changes differed substantially between the two scenarios. Our estimations of farm structural change provide a proper context for assessing impacts of and adaptation to climate change in 2050 at crop and farm level.
|
|
|
Nguyen, T. P. L., Seddaiu, G., Virdis, S. G. P., Tidore, C., Pasqui, M., & Roggero, P. P. (2016). Perceiving to learn or learning to perceive? Understanding farmers’ perceptions and adaptation to climate uncertainties. Agricultural Systems, 143, 205–216.
Abstract: Perception not only shapes knowledge but knowledge also shapes perception. Humans adapt to the natural world through a process of learning in which they interpret their sensory impressions in order to give meaning to their environment and act accordingly. In this research, we examined how farmers’ decision making is shaped in the context of changing climate. Using empirical data (face-to-face semi-structured interviews and questionnaires) on four Mediterranean farming systems from a case study located in Oristano (Sardinia, Italy) we sought to understand farmers’ perception of climate change and their behaviors in adjustment of farming practices. We found different perceptions among farmer groups were mainly associated with the different socio-cultural and institutional settings and perceived relationships between climate factors and impacts on each farming systems. The research findings on different perceptions among farmer groups can help to understand farmers’ current choices and attitudes of adaptation for supporting the development of appropriate adaptation strategies. In addition, the knowledge of socio-cultural and economic factors that lead to biases in climate perceptions can help to integrate climate communication into adaptation research for making sense of climate impacts and responses at farm level.
|
|
|
Wolf, J., Kanellopoulos, A., Kros, J., Webber, H., Zhao, G., Britz, W., et al. (2015). Combined analysis of climate, technological and price changes on future arable farming systems in Europe. Agricultural Systems, 140, 56–73.
Abstract: In this study, we compare the relative importance of climate change to technological, management, price and policy changes on European arable farming systems. This required linking four models: the SIMPLACE crop growth modelling framework to calculate future yields under climate change for arable crops; the CAPRI model to estimate impacts on global agricultural markets, specifically product prices; the bio-economic farm model FSSIM to calculate the future changes in cropping patterns and farm net income at the farm and regional level; and the environmental model INTEGRATOR to calculate nitrogen (N) uptake and losses to air and water. First, the four linked models were applied to analyse the effect of climate change only or a most likely baseline (i.e. B1) scenario for 2050 as well as for two alternative scenarios with, respectively, strong (i.e. A1-b1) and weak economic growth (B2) for five regions/countries across Europe (i.e. Denmark, Flevoland, Midi Pyrenees, Zachodniopomorsld and Andalucia). These analyses Were repeated but assuming in addition to climate change impacts, also the effects of changes in technology and management on crop yields, the effects of changes in prices and policies in 2050, and the effects of all factors together. The outcomes show that the effects of climate change to 2050 result in higher farm net incomes in the Northern and Northern-Central EU regions, in practically unchanged farm net incomes in the Central and Central-Southern EU regions, and in much lower farm net incomes in Southern EU regions compared to those in the base year. Climate change in combination with improved technology and farm management and/or with price changes towards 2050 results in a higher to much higher farm net incomes. Increases in farm net income for the B1 and A1-b1 scenarios are moderately stronger than those for the B2 scenario, due to the smaller increases in product prices and/or yields for the B2 scenario. Farm labour demand slightly to moderately increases towards 2050 as related to changes in cropping patterns. Changes in N2O emissions and N leaching compared to the base year are mainly caused by changes in total N inputs from the applied fertilizers and animal manure, which in turn are influenced by changes in crop yields and cropping patterns, whereas NH3 emissions are mainly determined by assumed improvements in manure application techniques. N emissions and N leaching strongly increase in Denmark and Zachodniopomorski, slightly decrease to moderately increase in Flevoland and Midi-Pyrenees, and strongly decrease in Andalucia, except for NH3 emissions which zero to moderately decrease in Flevoland and Denmark. (C) 2015 Elsevier Ltd. All tights reserved.
|
|