|
Conradt, T., Gornott, C., & Wechsung, F. (2016). Extending and improving regionalized winter wheat and silage maize yield regression models for Germany: Enhancing the predictive skill by panel definition through cluster analysis. Agricultural and Forest Meteorology, 216, 68–81.
Abstract: Regional agricultural yield assessments allowing for weather effect quantifications are a valuable basis for deriving scenarios of climate change effects and developing adaptation strategies. Assessing weather effects by statistical methods is a classical approach, but for obtaining robust results many details deserve attention and require individual decisions as is demonstrated in this paper. We evaluated regression models for annual yield changes of winter wheat and silage maize in more than 300 German counties and revised them to increase their predictive power. A major effort of this study was, however, aggregating separately estimated time series models (STSM) into panel data models (PDM) based on cluster analyses. The cluster analyses were based on the per-county estimates of STSM parameters. The original STSM formulations (adopted from a parallel study) contained also the non-meteorological input variables acreage and fertilizer price. The models were revised to use only weather variables as estimation basis. These consisted of time aggregates of radiation, precipitation, temperature, and potential evapotranspiration. Altering the input variables generally increased the predictive power of the models as did their clustering into PDM. For each crop, five alternative clusterings were produced by three different methods, and similarities between their spatial structures seem to confirm the existence of objective clusters about common model parameters. Observed smooth transitions of STSM parameter values in space suggest, however, spatial autocorrelation effects that could also be modeled explicitly. Both clustering and autocorrelation approaches can effectively reduce the noise in parameter estimation through targeted aggregation of input data. (C) 2015 Elsevier B.V. All rights reserved.
|
|
|
Ghaley, B. B., & Porter, J. R. (2014). Ecosystem function and service quantification and valuation in a conventional winter wheat production system with the DAISY model in Denmark. Ecosystem Services, 10, 79–83.
Abstract: With inevitable link between ecosystem function (EF), ecosystem services (ES) and agricultural productivity, there is a need for quantification and valuation of EF and ES in agro-ecosystems. Management practices have significant effects on soil organic matter (SOM), affecting productivity, EF and ES provision. The objective was to quantify two EF: soil water storage and nitrogen mineralization and three ES: food and fodder production and carbon sequestration, in a conventional winter wheat production system at 2.6% SOM compared to 50% lower (1.3%) and 50% higher (3.9%) SOM in Denmark by DAISY model. At 2.6% SOM, the food and fodder production was 649 and 6.86 t ha(-1) year(-1) respectively whereas carbon sequestration and soil water storage was 9.73 t ha(-1) year and 684 mm ha(-1) year(-1) respectively and nitrogen mineralisation was 83.58 kg ha(-1) year(-1), AL 2.6% SOM, the two EF and three ES values were US$ 177 and US$ 2542 ha(-1) year respectively equivalent to US$ 96 and US$1370 million year(-1) respectively in Denmark. The EF and ES quantities and values were positively correlated with SOM content. Hence, the quantification and valuation of EF and ES provides an empirical tool for optimising the Er. and ES provision for agricultural productivity. (C) 2014 Elsevier B.V. All rights reserved
|
|
|
Klosterhalfen, A., Herbst, M., Weihermueller, L., Graf, A., Schmidt, M., Stadler, A., et al. (2017). Multi-site calibration and validation of a net ecosystem carbon exchange model for croplands. Ecol. Model., 363, 137–156.
Abstract: Croplands play an important role in the carbon budget of many regions. However, the estimation of their carbon balance remains difficult due to diversity and complexity of the processes involved. We report the coupling of a one-dimensional soil water, heat, and CO2 flux model (SOILCO2), a pool concept of soil carbon turnover (RothC), and a crop growth module (SUCROS) to predict the net ecosystem exchange (NEE) of carbon. The coupled model, further referred to as AgroC, was extended with routines for managed grassland as well as for root exudation and root decay. In a first step, the coupled model was applied to two winter wheat sites and one upland grassland site in Germany. The model was calibrated based on soil water content, soil temperature, biometric, and soil respiration measurements for each site, and validated in terms of hourly NEE measured with the eddy covariance technique. The overall model performance of AgroC was sufficient with a model efficiency above 0.78 and a correlation coefficient above 0.91 for NEE. In a second step, AgroC was optimized with eddy covariance NEE measurements to examine the effect of different objective functions, constraints, and data-transformations on estimated NEE. It was found that NEE showed a distinct sensitivity to the choice of objective function and the inclusion of soil respiration data in the optimization process. In particular, both positive and negative day- and nighttime fluxes were found to be sensitive to the selected optimization strategy. Additional consideration of soil respiration measurements improved the simulation of small positive fluxes remarkably. Even though the model performance of the selected optimization strategies did not diverge substantially, the resulting cumulative NEE over simulation time period differed substantially. Therefore, it is concluded that data transformations, definitions of objective functions, and data sources have to be considered cautiously when a terrestrial ecosystem model is used to determine NEE by means of eddy covariance measurements. (C) 2017 Elsevier B.V. All rights reserved.
|
|
|
Montesino-San Martín, M., Olesen, J. E., & Porter, J. R. (2014). A genotype, environment and management (GxExM) analysis of adaptation in winter wheat to climate change in Denmark. Agricultural and Forest Meteorology, 187, 1–13.
Abstract: Wheat yields in Europe have shown stagnating trends during the last two decades, partly attributed to climate change. Such developments challenge the needs for increased production, in particular at higher latitudes, to meet increasing global demands and expected productivity reductions at lower latitudes. Climate change projections from three General Circulation Models or GCMs (UKMO-HadGEM1, INM-GM3.0 and CSIRO-Mk3.1) for the A1FI SIZES emission scenario for 2000 to 2100 were downscaled at a northern latitude location (Foulum, Denmark) using LARS-WG5.3. The scenarios accounted for changes in temperature, precipitation and atmospheric CO2 concentration. In addition, three temperature-variability scenarios were included assuming different levels of decreased temperature variability in winter and increased in summer. Crop yield was simulated for the different climate change scenarios by a calibrated version of AFRCWHEAT2 to model several combinations of genotypes (varying in crop growth, development and tolerance to water and nitrogen scarcity) and management (sowing dates and nitrogen fertilization rate). The simulations showed a slight improvement of grain yields (0.3-1.2 Mg ha(-1)) in the medium-term (2030-2050), but not enough to cope with expected increases in demand for food and feed. Optimum management added up to 1.8 Mg ha(-1). Genetic modifications regarding winter wheat crop development exhibit the greatest sensitivity to climate and larger potential for improvement (+3.8 Mg ha(-1)). The results consistently points towards need for cultivars with a longer reproductive phases (2.9-7.5% per 1 degrees C) and lower photoperiod sensitivities. Due to the positive synergies between several genotypic characteristics, multiple-target breeding programmes would be necessary, possibly assisted by model-based assessments of optimal phenotypic characteristics.
|
|
|
Trnka, M., Hlavinka, P., & Semenov, M. A. (2015). Adaptation options for wheat in Europe will be limited by increased adverse weather events under climate change. J. R. Soc. Interface, 12(112), 20150721.
Abstract: Ways of increasing the production of wheat, the most widely grown cereal crop, will need to be found to meet the increasing demand caused by human population growth in the coming decades. This increase must occur despite the decrease in yield gains now being reported in some regions, increased price volatility and the expected increase in the frequency of adverse weather events that can reduce yields. However, if and how the frequency of adverse weather events will change over Europe, the most important wheat-growing area, has not yet been analysed. Here, we show that the accumulated probability of 11 adverse weather events with the potential to significantly reduce yield will increase markedly across all of Europe. We found that by the end of the century, the exposure of the key European wheat-growing areas, where most wheat production is currently concentrated, may increase more than twofold. However, if we consider the entire arable land area of Europe, a greater than threefold increase in risk was predicted. Therefore, shifting wheat production to new producing regions to reduce the risk might not be possible as the risk of adverse events beyond the key wheat-growing areas increases even more. Furthermore, we found a marked increase in wheat exposure to high temperatures, severe droughts and field inaccessibility compared with other types of adverse events. Our results also showed the limitations of some of the presently debated adaptation options and demonstrated the need for development of region-specific strategies. Other regions of the world could be affected by adverse weather events in the future in a way different from that considered here for Europe. This observation emphasizes the importance of conducting similar analyses for other major wheat regions.
|
|