|
Kersebaum, K. C., Boote, K. J., Jorgenson, J. S., Nendel, C., Bindi, M., Frühauf, C., et al. (2015). Analysis and classification of data sets for calibration and validation of agro-ecosystem models. Env. Model. Softw., 72, 402–417.
Abstract: Experimental field data are used at different levels of complexity to calibrate, validate and improve agroecosystem models to enhance their reliability for regional impact assessment. A methodological framework and software are presented to evaluate and classify data sets into four classes regarding their suitability for different modelling purposes. Weighting of inputs and variables for testing was set from the aspect of crop modelling. The software allows users to adjust weights according to their specific requirements. Background information is given for the variables with respect to their relevance for modelling and possible uncertainties. Examples are given for data sets of the different classes. The framework helps to assemble high quality data bases, to select data from data bases according to modellers requirements and gives guidelines to experimentalists for experimental design and decide on the most effective measurements to improve the usefulness of their data for modelling, statistical analysis and data assimilation. (C) 2015 Elsevier Ltd. All rights reserved.
|
|
|
Makowski, D., Asseng, S., Ewert, F., Bassu, S., Durand, J. L., Li, T., et al. (2015). A statistical analysis of three ensembles of crop model responses to temperature and CO2 concentration. Agricultural and Forest Meteorology, 214-215, 483–493.
Abstract: Ensembles of process-based crop models are increasingly used to simulate crop growth for scenarios of temperature and/or precipitation changes corresponding to different projections of atmospheric CO2 concentrations. This approach generates large datasets with thousands of simulated crop yield data. Such datasets potentially provide new information but it is difficult to summarize them in a useful way due to their structural complexities. An associated issue is that it is not straightforward to compare crops and to interpolate the results to alternative climate scenarios not initially included in the simulation protocols. Here we demonstrate that statistical models based on random-coefficient regressions are able to emulate ensembles of process-based crop models. An important advantage of the proposed statistical models is that they can interpolate between temperature levels and between CO2 concentration levels, and can thus be used to calculate temperature and [CO2] thresholds leading to yield loss or yield gain, without rerunning the original complex crop models. Our approach is illustrated with three yield datasets simulated by 19 maize models, 26 wheat models, and 13 rice models. Several statistical models are fitted to these datasets, and are then used to analyze the variability of the yield response to [CO2] and temperature. Based on our results, we show that, for wheat, a [CO2] increase is likely to outweigh the negative effect of a temperature increase of +2 degrees C in the considered sites. Compared to wheat, required levels of [CO2] increase are much higher for maize, and intermediate for rice. For all crops, uncertainties in simulating climate change impacts increase more with temperature than with elevated [CO2].
|
|
|
Müller, C., & Robertson, R. D. (2014). Projecting future crop productivity for global economic modeling. Agric. Econ., 45(1), 37–50.
Abstract: Assessments of climate change impacts on agricultural markets and land-use patterns rely on quantification of climate change impacts on the spatial patterns of land productivity. We supply a set of climate impact scenarios on agricultural land productivity derived from two climate models and two biophysical crop growth models to account for some of the uncertainty inherent in climate and impact models. Aggregation in space and time leads to information losses that can determine climate change impacts on agricultural markets and land-use patterns because often aggregation is across steep gradients from low to high impacts or from increases to decreases. The four climate change impact scenarios supplied here were designed to represent the most significant impacts (high emission scenario only, assumed ineffectiveness of carbon dioxide fertilization on agricultural yields, no adjustments in management) but are consistent with the assumption that changes in agricultural practices are covered in the economic models. Globally, production of individual crops decrease by 10-38% under these climate change scenarios, with large uncertainties in spatial patterns that are determined by both the uncertainty in climate projections and the choice of impact model. This uncertainty in climate impact on crop productivity needs to be considered by economic assessments of climate change.
|
|
|
Rötter, R. P., Appiah, M., Fichtler, E., Kersebaum, K. C., Trnka, M., & Hoffmann, M. P. (2018). Linking modelling and experimentation to better capture crop impacts of agroclimatic extremes-A review. Field Crops Research, 221, 142–156.
Abstract: Climate change implies higher frequency and magnitude of agroclimatic extremes threatening plant production and the provision of other ecosystem services. This review is motivated by a mismatch between advances made regarding deeper understanding of abiotic stress physiology and its incorporation into ecophysiological models in order to more accurately quantifying the impacts of extreme events at crop system or higher aggregation levels. Adverse agroclimatic extremes considered most detrimental to crop production include drought, heat, heavy rains/hail and storm, flooding and frost, and, in particular, combinations of them. Our core question is: How have and could empirical data be exploited to improve the capability of widely used crop simulation models in assessing crop impacts of key agroclimatic extremes for the globally most important grain crops? To date there is no comprehensive review synthesizing available knowledge for a broad range of extremes, grain crops and crop models as a basis for identifying research gaps and prospects. To address these issues, we selected eight major grain crops and performed three systematic reviews using SCOPUS for period 1995-2016. Furthermore, we amended/complemented the reviews manually and performed an in-depth analysis using a sub-sample of papers. Results show that by far the majority of empirical studies (1631 out of 1772) concentrate on the three agroclimatic extremes drought, heat and heavy rain and on the three major staples wheat, maize and rice (1259 out of 1772); the concentration on just a few has increased over time. With respect to modelling studies two model families, i.e. CERES-DSSAT and APSIM, are dearly dominating for wheat and maize; for rice, ORYZA2000 and CERES-Rice predominate and are equally strong. For crops other than maize and wheat the number of studies is small. Empirical and modelling papers don’t differ much in the proportions the various extreme events are dealt with drought and heat stress together account for approx. 80% of the studies. There has been a dramatic increase in the number of papers, especially after 2010. As a way forward, we suggest to have very targeted and well-designed experiments on the specific crop impacts of a given extreme as well as of combinations of them. This in particular refers to extremes addressed with insufficient specificity (e.g. drought) or being under-researched in relation to their economic importance (heavy rains/storm and flooding). Furthermore, we strongly recommend extending research to crops other than wheat, maize and rice.
|
|
|
Schauberger, B., Rolinski, S., & Müller, C. (2016). A network-based approach for semi-quantitative knowledge mining and its application to yield variability. Environ. Res. Lett., 11(12), 123001.
Abstract: Variability of crop yields is detrimental for food security. Under climate change its amplitude is likely to increase, thus it is essential to understand the underlying causes and mechanisms. Crop models are the primary tool to project future changes in crop yields under climate change. Asystematic overview of drivers and mechanisms of crop yield variability (YV) can thus inform crop model development and facilitate improved understanding of climate change impacts on crop yields. Yet there is a vast body of literature on crop physiology and YV, which makes a prioritization of mechanisms for implementation in models challenging. Therefore this paper takes on a novel approach to systematically mine and organize existing knowledge from the literature. The aim is to identify important mechanisms lacking in models, which can help to set priorities in model improvement. We structure knowledge from the literature in a semi-quantitative network. This network consists of complex interactions between growing conditions, plant physiology and crop yield. We utilize the resulting network structure to assign relative importance to causes of YV and related plant physiological processes. As expected, our findings confirm existing knowledge, in particular on the dominant role of temperature and precipitation, but also highlight other important drivers of YV. More importantly, our method allows for identifying the relevant physiological processes that transmit variability in growing conditions to variability in yield. We can identify explicit targets for the improvement of crop models. The network can additionally guide model development by outlining complex interactions between processes and by easily retrieving quantitative information for each of the 350 interactions. We show the validity of our network method as a structured, consistent and scalable dictionary of literature. The method can easily be applied to many other research fields.
|
|