|
Baldinger, L., Vaillant, J., Zollitsch, W., & Rinne, M. (2015). Making a decision-support system for dairy farmers usable throughout Europe: the challenge of feed evaluation. Advances in Animal Biosciences, 6(01), 3–5.
|
|
|
Bellocchi, G., Rivington, M., Matthews, K., & Acutis, M. (2015). Deliberative processes for comprehensive evaluation of agroecological models. A review. Agron. Sust. Developm., 35(2), 589–605.
Abstract: The use of biophysical models in agroecology has increased in the last few decades for two main reasons: the need to formalize empirical knowledge and the need to disseminate model-based decision support for decision makers (such as farmers, advisors, and policy makers). The first has encouraged the development and use of mathematical models to enhance the efficiency of field research through extrapolation beyond the limits of site, season, and management. The second reflects the increasing need (by scientists, managers, and the public) for simulation experimentation to explore options and consequences, for example, future resource use efficiency (i.e., management in sustainable intensification), impacts of and adaptation to climate change, understanding market and policy responses to shocks initiated at a biophysical level under increasing demand, and limited supply capacity. Production concerns thus dominate most model applications, but there is a notable growing emphasis on environmental, economic, and policy dimensions. Identifying effective methods of assessing model quality and performance has become a challenging but vital imperative, considering the variety of factors influencing model outputs. Understanding the requirements of stakeholders, in respect of model use, logically implies the need for their inclusion in model evaluation methods. We reviewed the use of metrics of model evaluation, with a particular emphasis on the involvement of stakeholders to expand horizons beyond conventional structured, numeric analyses. Two major topics are discussed: (1) the importance of deliberative processes for model evaluation, and (2) the role computer-aided techniques may play to integrate deliberative processes into the evaluation of agroecological models. We point out that (i) the evaluation of agroecological models can be improved through stakeholder follow-up, which is a key for the acceptability of model realizations in practice, (ii) model credibility depends not only on the outcomes of well-structured, numerically based evaluation, but also on less tangible factors that may need to be addressed using complementary deliberative processes, (iii) comprehensive evaluation of simulation models can be achieved by integrating the expectations of stakeholders via a weighting system of preferences and perception, (iv) questionnaire-based surveys can help understand the challenges posed by the deliberative process, and (v) a benefit can be obtained if model evaluation is conceived in a decisional perspective and evaluation techniques are developed at the same pace with which the models themselves are created and improved. Scientific knowledge hubs are also recognized as critical pillars to advance good modeling practice in relation to model evaluation (including access to dedicated software tools), an activity which is frequently neglected in the context of time-limited framework programs.
|
|
|
Caubel, J., García de Cortázar-Atauri, I., Launay, M., de Noblet-Ducoudré, N., Huard, F., Bertuzzi, P., et al. (2015). Broadening the scope for ecoclimatic indicators to assess crop climate suitability according to ecophysiological, technical and quality criteria. Agricultural and Forest Meteorology, 207, 94–106.
Abstract: The cultivation of crops in a given area is highly dependent of climatic conditions. Assessment of how the climate is favorable is highly useful for planners, land managers, farmers and plant breeders who can propose and apply adaptation strategies to improve agricultural potentialities. The aim of this study was to develop an assessment method for crop-climate suitability that was generic enough to be applied to a wide range of issues and crops. The method proposed is based on agroclimatic indicators that are calculated over phenological periods (ecoclimatic indicators). These indicators are highly relevant since they provide accurate information about the effect of climate on particular plant processes and cultural practices that take place during specific phenological periods. Three case studies were performed in order to illustrate the potentialities of the method. They concern annual (maize and wheat) and perennial (grape) crops and focus on the study of climate suitability in terms of the following criteria: ecophysiological, days available to carry out cultural practices, and harvest quality. The analysis of the results revealed both the advantages and limitations of the method. The method is general and flexible enough to be applied to a wide range of issues even if an expert assessment is initially needed to build the analysis framework. The limited number of input data makes it possible to use it to explore future possibilities for agriculture in many areas. The access to intermediate information through elementary ecoclimatic indicators allows users to propose targeted adaptations when climate suitability is not satisfactory.
|
|
|
Crout, N. M. J., Craigon, J., Cox, G. M., Jao, Y., Tarsitano, D., Wood, A. T. A., et al. (2014). An objective approach to model reduction: Application to the Sirius wheat model. Agricultural and Forest Meteorology, 189-190(100), 211–219.
Abstract: An existing simulation model of wheat growth and development, Sirius, was evaluated through a systematic model reduction procedure. The model was automatically manipulated under software control to replace variables within the model structure with constants, individually and in combination. Predictions of the resultant models were compared to growth analysis observations of total biomass, grain yield, and canopy leaf area derived from 9 trials conducted in the UK and New Zealand under optimal, nitrogen limiting and drought conditions. Model performance in predicting these observations was compared in order to evaluate whether individual model variables contributed positively to the overall prediction. Of the 1 1 1 model variables considered 16 were identified as potentially redundant. Areas of the model where there was evidence of redundancy were: (a) translocation of biomass carbon to grain; (b) nitrogen physiology; (c) adjustment of air temperature for various modelled processes; (d) allowance for diurnal variation in temperature; (e) vernalisation (f) soil nitrogen mineralisation (g) soil surface evaporation. It is not suggested that these are not important processes in real crops, rather, that their representation in the model cannot be justified in the context of the analysis. The approach described is analogous to a detailed model inter-comparison although it would be better described as a model intra-comparison as it is based on the comparison of many simplified forms of the same model. The approach provides automation to increase the efficiency of the evaluation and a systematic means of increasing the rigour of the evaluation.
|
|
|
Fan, F., Henriksen, C. B., & Porter, J. (2016). Valuation of ecosystem services in organic cereal crop production systems with different management practices in relation to organic matter input. Ecosystem Services, 22, 117–127.
Abstract: As the degradation of global ecosystem services (ES) continues in the last five decades, maintaining or even enhancing the ES of agro-ecosystem is one of the approaches to mitigate the global ES loss. This study provides the first estimate of an economic valuation of ES provided by organic cereal crop production systems with different management practices in relation to organic matter input (low, medium and high). Our results show that organic matter inputs significantly affect the total ES value on organic cereal crop production systems. The system with high organic matter input has the highest gross total ES value (US$ 1969 ha(-1) yr(-1)), followed by the low organic matter input system (US$ 1688 ha(-1) yr(-1)), and the lowest ES value are found in the medium organic matter input system (US$ 1492 ha(-1) yr(-1)). Organic matter inputs have strong positive relationship with non-marketable ES values, while this relationship was not found in marketable ES values. Monetizing the ES can be used by land managers and policy makers to adjust management practices in terms of organic matter input in cereal production system with a long term goal for sustainable agriculture.
|
|