|
De Pascale, S., Orsini, F., Caputo, R., Palermo, M. A., Barbieri, G., & Maggio, A. (2012). Seasonal and multiannual effects of salinisation on tomato yield and fruit quality. Functional Plant Biology, 39(8), 689–698.
Abstract: The effects of short-and long-term salinisation were studied by comparing tomato growth on a soil exposed to one-season salinisation (short term) vs growth on a soil exposed to >20 years salinisation (long term). Remarkable differences were associated to substantial modifications of the soil physical-chemical characteristics in the root zone, including deteriorated structure, reduced infiltration properties and increased pH. Fresh yield, fruit number and fruit weight were similarly affected by short-and long-term salinisation. In contrast, the marketable yield was significantly lower in the long-term salinised soil-a response that was also associated to nutritional imbalance (mainly referred to P and K). As reported for plants growing under oxygen deprivation stress, the antioxidant capacity of the water soluble fraction of salinised tomato fruits was enhanced by short-term salinisation, also. Overall, long-term salinisation may cause physiological imbalances and yield reductions that cannot be solely attributed to hyperosmotic stress and ionic toxicity. Therefore, the ability of plants to cope with nutritional deficiency and withstand high pH and anoxia may be important traits that should be considered to improve plant tolerance to long-term salinised soils.
|
|
|
Minet, J., Laloy, E., Tychon, B., & François, L. (2015). Bayesian inversions of a dynamic vegetation model at four European grassland sites. Biogeosciences, 12(9), 2809–2829.
Abstract: Eddy covariance data from four European grassland sites are used to probabilistically invert the CARAIB (CARbon Assimilation In the Biosphere) dynamic vegetation model (DVM) with 10 unknown parameters, using the DREAM((ZS)) (DiffeRential Evolution Adaptive Metropolis) Markov chain Monte Carlo (MCMC) sampler. We focus on comparing model inversions, considering both homoscedastic and heteroscedastic eddy covariance residual errors, with variances either fixed a priori or jointly inferred together with the model parameters. Agreements between measured and simulated data during calibration are comparable with previous studies, with root mean square errors (RMSEs) of simulated daily gross primary productivity (GPP), ecosystem respiration (RECO) and evapotranspiration (ET) ranging from 1.73 to 2.19, 1.04 to 1.56 g C m(-2) day(-1) and 0.50 to 1.28 mm day(-1), respectively. For the calibration period, using a homoscedastic eddy covariance residual error model resulted in a better agreement between measured and modelled data than using a heteroscedastic residual error model. However, a model validation experiment showed that CARAIB models calibrated considering heteroscedastic residual errors perform better. Posterior parameter distributions derived from using a heteroscedastic model of the residuals thus appear to be more robust. This is the case even though the classical linear heteroscedastic error model assumed herein did not fully remove heteroscedasticity of the GPP residuals. Despite the fact that the calibrated model is generally capable of fitting the data within measurement errors, systematic bias in the model simulations are observed. These are likely due to model inadequacies such as shortcomings in the photosynthesis modelling. Besides the residual error treatment, differences between model parameter posterior distributions among the four grassland sites are also investigated. It is shown that the marginal distributions of the specific leaf area and characteristic mortality time parameters can be explained by site-specific ecophysiological characteristics.
|
|
|
Sakschewski, B., von Bloh, W., Huber, V., Müller, C., & Bondeau, A. (2014). Feeding 10 billion people under climate change: How large is the production gap of current agricultural systems. Ecol. Model., 288, 103–111.
Abstract: The human population is projected to reach more than 10 billion in the year 2100. Together with changing consumption pattern, population growth will lead to increasing food demand. The question arises whether or not the Earth is capable of fulfilling this demand. In this study, we approach this question by estimating the carrying capacity of current agricultural systems (K-C), which does not measure the maximum number of people the Earth is likely to feed in the future, but rather allows for an indirect assessment of the increases in agricultural productivity required to meet demands. We project agricultural food production under progressing climate change using the state-of-the-art dynamic global vegetation model LPJmL, and input data of 3 climate models. For 1990 to 2100 the worldwide annual caloric yield of the most important 11 crop types is simulated. Model runs with and without elevated atmospheric CO2 concentrations are performed in order to investigate CO2 fertilization effects. Country-specific per-capita caloric demands fixed at current levels and changing demands based on future GDP projections are considered to assess the role of future dietary shifts. Our results indicate that current population projections may considerably exceed the maximum number of people that can be fed globally if climate change is not accompanied by significant changes in land use, agricultural efficiencies and/or consumption pathways. We estimate the gap between projected population size and K-C to reach 2 to 6.8 billion people by 2100. We also present possible caloric self-supply changes between 2000 and 2100 for all countries included in this study. The results show that predominantly developing countries in tropical and subtropical regions will experience vast decreases of self-supply. Therefore, this study is important for planning future large-scale agricultural management, as well as the critical assessment of population projections, which should take food-mediated climate change feedbacks into account
|
|
|
Webber, H., White, J. W., Kimball, B. A., Ewert, F., Asseng, S., Rezaei, E. E., et al. (2018). Physical robustness of canopy temperature models for crop heat stress simulation across environments and production conditions. Field Crops Research, 216, 75–88.
Abstract: Despite widespread application in studying climate change impacts, most crop models ignore complex interactions among air temperature, crop and soil water status, CO2 concentration and atmospheric conditions that influence crop canopy temperature. The current study extended previous studies by evaluating Tc simulations from nine crop models at six locations across environmental and production conditions. Each crop model implemented one of an empirical (EMP), an energy balance assuming neutral stability (EBN) or an energy balance correcting for atmospheric stability conditions (EBSC) approach to simulate Tc. Model performance in predicting Tc was evaluated for two experiments in continental North America with various water, nitrogen and CO2 treatments. An empirical model fit to one dataset had the best performance, followed by the EBSC models. Stability conditions explained much of the differences between modeling approaches. More accurate simulation of heat stress will likely require use of energy balance approaches that consider atmospheric stability conditions.
|
|