|
Angulo, C., Gaiser, T., Rötter, R. P., Børgesen, C. D., Hlavinka, P., Trnka, M., et al. (2014). ‘Fingerprints’ of four crop models as affected by soil input data aggregation. European Journal of Agronomy, 61, 35–48.
Abstract: • Systematic analysis of the influence of spatial soil data resolution on simulated regional yields and total growing season evapotranspiration. • The responses of four crop models of different complexity are compared. • Differences between models are larger than the effect of the chosen spatial soil data resolution. • Low influence of soil data resolution due to: high precipitation amount, methods for calculating water retention and method of data aggregation. The spatial variability of soil properties is an important driver of yield variability at both field and regional scale. Thus, when using crop growth simulation models, the choice of spatial resolution of soil input data might be key in order to accurately reproduce observed yield variability. In this study we used four crop models (SIMPLACE<LINTUL-SLIM>, DSSAT-CSM, EPIC and DAISY) differing in the detail of modeling above-ground biomass and yield as well as of modeling soil water dynamics, water uptake and drought effects on plants to simulate winter wheat in two (agro-climatologically and geo-morphologically) contrasting regions of the federal state of North-Rhine-Westphalia (Germany) for the period from 1995 to 2008. Three spatial resolutions of soil input data were taken into consideration, corresponding to the following map scales: 1:50 000, 1:300 000 and 1:1 000 000. The four crop models were run for water-limited production conditions and model results were evaluated in the form of frequency distributions, depicted by bean-plots. In both regions, soil data aggregation had very small influence on the shape and range of frequency distributions of simulated yield and simulated total growing season evapotranspiration for all models. Further analysis revealed that the small influence of spatial resolution of soil input data might be related to: (a) the high precipitation amount in the region which partly masked differences in soil characteristics for water holding capacity, (b) the loss of variability in hydraulic soil properties due to the methods applied to calculate water retention properties of the used soil profiles, and (c) the method of soil data aggregation. No characteristic “fingerprint” between sites, years and resolutions could be found for any of the models. Our results support earlier recommendation to evaluate model results on the basis of frequency distributions since these offer quick and better insight into the distribution of simulation results as compared to summary statistics only. Finally, our results support conclusions from other studies about the usefulness of considering a multi-model approach to quantify the uncertainty in simulated yields introduced by the crop growth simulation approach when exploring the effects of scaling for regional yield impact assessments.
|
|
|
Bulak, P., Walkiewicz, A., & Brzezińska, M. (2014). Plant growth regulators-assisted phytoextraction. Biol. Plant., 58(1), 1–8.
Abstract: Plant growth regulators (PRG)-assisted phytoremediation is a technique that could enhance the yield of heavy metal accumulation in plant tissues. So far, a small number of experiments have helped identify three groups of plant hormones that may be useful for this purpose: auxins, cytokinins, and gibberellins. Studies have shown that these hormones positively affect the degree of accumulation of metallic impurities and improve the growth and stress resistance of plants. This review summarizes the present knowledge about PGRs’ impact on phytoextraction yield.
|
|
|
Castañeda-Vera, A., Leffelaar, P. A., Álvaro-Fuentes, J., Cantero-Martínez, C., & Mínguez, M. I. (2015). Selecting crop models for decision making in wheat insurance. European Journal of Agronomy, 68, 97–116.
Abstract: In crop insurance, the accuracy with which the insurer quantifies the actual risk is highly dependent on the availability on actual yield data. Crop models might be valuable tools to generate data on expected yields for risk assessment when no historical records are available. However, selecting a crop model for a specific objective, location and implementation scale is a difficult task. A look inside the different crop and soil modules to understand how outputs are obtained might facilitate model choice. The objectives of this paper were (i) to assess the usefulness of crop models to be used within a crop insurance analysis and design and (ii) to select the most suitable crop model for drought risk assessment in semi-arid regions in Spain. For that purpose first, a pre-selection of crop models simulating wheat yield under rainfed growing conditions at the field scale was made, and second, four selected models (Aquacrop, CERES-Wheat, CropSyst and WOFOST) were compared in terms of modelling approaches, process descriptions and model outputs. Outputs of the four models for the simulation of winter wheat growth are comparable when water is not limiting, but differences are larger when simulating yields under rainfed conditions. These differences in rainfed yields are mainly related to the dissimilar simulated soil water availability and the assumed linkages with dry matter formation. We concluded that for the simulation of winter wheat growth at field scale in such semi-arid conditions, CERES-Wheat and CropSyst are preferred. WOFOST is a satisfactory compromise between data availability and complexity when detail data on soil is limited. Aquacrop integrates physiological processes in some representative parameters, thus diminishing the number of input parameters, what is seen as an advantage when observed data is scarce. However, the high sensitivity of this model to low water availability limits its use in the region considered. Contrary to the use of ensembles of crop models, we endorse that efforts be concentrated on selecting or rebuilding a model that includes approaches that better describe the agronomic conditions of the regions in which they will be applied. The use of such complex methodologies as crop models is associated with numerous sources of uncertainty, although these models are the best tools available to get insight in these complex agronomic systems. (C) 2015 Elsevier B.V. All rights reserved.
|
|
|
Cirillo, V., Masin, R., Maggio, A., & Zanin, G. (2018). Crop-weed interactions in saline environments. Europ. J. Agron., 99, 51–61.
Abstract: Soil salinization is one of the most critical environmental factors affecting crop yield. It is estimated that 20% of cultivated land and 33% of irrigated agricultural land are affected by salinity. In the last decades, considerable effort to manage saline agro-ecosystems has focused on 1) controlling soil salinity to minimize/reduce the accumulation of salts in the root zone and 2) improving plants ability to cope with osmotic and ionic stress. Less attention has been given to other components of the agro-ecosystem including weed populations, which also react and adapt to soil salinization and indirectly affect plant growth and yield. Weeds represent an increasing challenge for crop systems since they have high genetic resilience and adaptation ability to adverse environmental conditions such as soil salinization. In this review, we assess current knowledge on salinity tolerance of weeds in agricultural contexts and discuss critical components of crop-weed interactions that may increase weeds competitiveness under salinity. Compared to crop species, weeds generally exhibit greater salt tolerance due to high intraspecific variability, associated with diverse physiological adaptation mechanisms (e.g. phenotipic plasticity, seed heteromorphism, allelopathy). Weed competitiveness in saline soils may be enhanced by their earlier emergence, faster growth rates and synergies occurring between soil salts and allelochemicals released by weeds. In the future, a better understanding of crop-weed relationships and molecular, physiological and agronomic stress responses under salinity is essential to design efficient strategies to achieve weed control under altered climatic and environmental conditions.
|
|
|
Coucheney, E., Buis, S., Launay, M., Constantin, J., Mary, B., García de Cortázar-Atauri, I., et al. (2015). Accuracy, robustness and behavior of the STICS soil–crop model for plant, water and nitrogen outputs: Evaluation over a wide range of agro-environmental conditions in France. Env. Model. Softw., 64, 177–190.
Abstract: Soil-crop models are increasingly used as predictive tools to assess yield and environmental impacts of agriculture in a growing diversity of contexts. They are however seldom evaluated at a given time over a wide domain of use. We tested here the performances of the STICS model (v8.2.2) with its standard set of parameters over a dataset covering 15 crops and a wide range of agropedoclimatic conditions in France. Model results showed a good overall accuracy, with little bias. Relative RMSE was larger for soil nitrate (49%) than for plant biomass (35%) and nitrogen (33%) and smallest for soil water (10%). Trends induced by contrasted environmental conditions and management practices were well reproduced. Finally, limited dependency of model errors on crops or environments indicated a satisfactory robustness. Such performances make STICS a valuable tool for studying the effects of changes in agro-ecosystems over the domain explored. (C) 2014 Elsevier Ltd. All rights reserved.
|
|