|
Conradt, T., Gornott, C., & Wechsung, F. (2016). Extending and improving regionalized winter wheat and silage maize yield regression models for Germany: Enhancing the predictive skill by panel definition through cluster analysis. Agricultural and Forest Meteorology, 216, 68–81.
Abstract: Regional agricultural yield assessments allowing for weather effect quantifications are a valuable basis for deriving scenarios of climate change effects and developing adaptation strategies. Assessing weather effects by statistical methods is a classical approach, but for obtaining robust results many details deserve attention and require individual decisions as is demonstrated in this paper. We evaluated regression models for annual yield changes of winter wheat and silage maize in more than 300 German counties and revised them to increase their predictive power. A major effort of this study was, however, aggregating separately estimated time series models (STSM) into panel data models (PDM) based on cluster analyses. The cluster analyses were based on the per-county estimates of STSM parameters. The original STSM formulations (adopted from a parallel study) contained also the non-meteorological input variables acreage and fertilizer price. The models were revised to use only weather variables as estimation basis. These consisted of time aggregates of radiation, precipitation, temperature, and potential evapotranspiration. Altering the input variables generally increased the predictive power of the models as did their clustering into PDM. For each crop, five alternative clusterings were produced by three different methods, and similarities between their spatial structures seem to confirm the existence of objective clusters about common model parameters. Observed smooth transitions of STSM parameter values in space suggest, however, spatial autocorrelation effects that could also be modeled explicitly. Both clustering and autocorrelation approaches can effectively reduce the noise in parameter estimation through targeted aggregation of input data. (C) 2015 Elsevier B.V. All rights reserved.
|
|
|
Milford, A. B., & Kildal, C. (2019). Meat Reduction by Force: The Case of “Meatless Monday” in the Norwegian Armed Forces. Sustainability, 11(10), 2741.
Abstract: Despite the scientific evidence that more plants and less animal-based food is more sustainable, policy interventions to reduce meat consumption are scarce. However, campaigns for meat free days in school and office canteens have spread globally over the last years. In this paper, we look at the Norwegian Armed Forces’ attempt to introduce the Meatless Monday campaign in their camps, and we evaluate the implementation process as well as the effect of the campaign on soldiers. Qualitative interviews with military staff indicate that lack of conviction about benefits of meat reduction, and the fact that kitchen staff did not feel ownership to the project, partly explain why vegetarian measures were not fully implemented in all the camps. A multivariate regression analysis with survey data from soldiers indicate that those who have experienced meat free days in the military kitchen are more prone to claim that joining the military has given them a more positive view on vegetarian food. Furthermore, the survey gives evidence that stated willingness to eat more vegetarian food is higher among soldiers who believe in the environmental and health benefits of meat reduction.
|
|
|
Murat, M., Malinowska, I., Gos, M., & Krzyszczak, J. (2018). Forecasting daily meteorological time series using ARIMA and regression models. Int. Agrophys., 32(2), 253–264.
Abstract: The daily air temperature and precipitation time series recorded between January 1, 1980 and December 31, 2010 in four European sites (Jokioinen, Dikopshof, Lleida and Lublin) from different climatic zones were modeled and forecasted. In our forecasting we used the methods of the Box-Jenkins and Holt-Winters seasonal auto regressive integrated moving-average, the autoregressive integrated moving-average with external regressors in the form of Fourier terms and the time series regression, including trend and seasonality components methodology with R software. It was demonstrated that obtained models are able to capture the dynamics of the time series data and to produce sensible forecasts.
|
|
|
Savary, S., Jouanin, C., Félix, I., Gourdain, E., Piraux, F., Brun, F., et al. (2016). Assessing plant health in a network of experiments on hardy winter wheat varieties in France: patterns of disease-climate associations. Eur. J. Plant Pathol., 146, 741–755.
Abstract: A data set generated by a multi-year (2003–2010) and multi-site network of experiments on winter wheat varieties grown at different levels of crop management is analysed in order to assess the importance of climate on the variability of wheat health. Wheat health is represented by the multiple pathosystem involving five components: leaf rust, yellow rust, fusarium head blight, powdery mildew, and septoria tritici blotch. An overall framework of associations between multiple diseases and climate variables is developed. This framework involves disease levels in a binary form (i.e. epidemic vs. non-epidemic) and synthesis variables accounting for climate over spring and early summer. The multiple disease-climate pattern of associations of this framework conforms to disease-specific knowledge of climate effects on the components of the pathosystem. It also concurs with a (climate-based) risk factor approach to wheat diseases. This report emphasizes the value of large scale data in crop health assessment and the usefulness of a risk factor approach for both tactical and strategic decisions for crop health management.
|
|
|
Sharif, B., Makowski, D., Plauborg, F., & Olesen, J. E. (2017). Comparison of regression techniques to predict response of oilseed rape yield to variation in climatic conditions in Denmark. Europ. J. Agron., 82, 11–20.
Abstract: Highlights • Regularization techniques for regression outperformed the classical regression techniques in predicting crop yields. • Different regression techniques with similar prediction accuracy showed different responses of major climatic variables to crop yield. • The regression models showed some responses of crop yield to climatic conditions that is mostly absent in process based crop models. Abstract Statistical regression models represent alternatives to process-based dynamic models for predicting the response of crop yields to variation in climatic conditions. Regression models can be used to quantify the effect of change in temperature and precipitation on yields. However, it is difficult to identify the most relevant input variables that should be included in regression models due to the high number of candidate variables and to their correlations. This paper compares several regression techniques for modeling response of winter oilseed rape yield to a high number of correlated input variables. Several statistical regression methods were fitted to a dataset including 689 observations of winter oilseed rape yield from replicated field experiments conducted in 239 sites in Denmark, covering nearly all regions of the country from 1992 to 2013. Regression methods were compared by cross-validation. The regression methods leading to the most accurate yield predictions were Lasso and Elastic Net, and the least accurate methods were ordinary least squares and stepwise regression. Partial least squares and ridge regression methods gave intermediate results. The estimated relative yield change for a +1°C temperature increase during flowering was estimated to range between 0 and +6 %, depending on choice of regression method. Precipitation was found to have an adverse effect on yield during autumn and winter. It was estimated that an increase in precipitation of +1 mm/day would result in a relative yield change ranging from 0 to −4 %. Soil type was also important for crop yields with lower yields on sandy soils compared to loamy soils. Later sowing was found to result in increased crop yield. The estimated effect of climate on yield was highly sensitive to the chosen regression method. Regression models showing similar performance led in some cases to different conclusions with respect to effect of temperature and precipitation. Hence, it is recommended to apply an ensemble of regression models, in order to account for the sensitivity of the data driven models for projecting crop yield under climate change.
|
|