|
Klosterhalfen, A., Herbst, M., Weihermueller, L., Graf, A., Schmidt, M., Stadler, A., et al. (2017). Multi-site calibration and validation of a net ecosystem carbon exchange model for croplands. Ecol. Model., 363, 137–156.
Abstract: Croplands play an important role in the carbon budget of many regions. However, the estimation of their carbon balance remains difficult due to diversity and complexity of the processes involved. We report the coupling of a one-dimensional soil water, heat, and CO2 flux model (SOILCO2), a pool concept of soil carbon turnover (RothC), and a crop growth module (SUCROS) to predict the net ecosystem exchange (NEE) of carbon. The coupled model, further referred to as AgroC, was extended with routines for managed grassland as well as for root exudation and root decay. In a first step, the coupled model was applied to two winter wheat sites and one upland grassland site in Germany. The model was calibrated based on soil water content, soil temperature, biometric, and soil respiration measurements for each site, and validated in terms of hourly NEE measured with the eddy covariance technique. The overall model performance of AgroC was sufficient with a model efficiency above 0.78 and a correlation coefficient above 0.91 for NEE. In a second step, AgroC was optimized with eddy covariance NEE measurements to examine the effect of different objective functions, constraints, and data-transformations on estimated NEE. It was found that NEE showed a distinct sensitivity to the choice of objective function and the inclusion of soil respiration data in the optimization process. In particular, both positive and negative day- and nighttime fluxes were found to be sensitive to the selected optimization strategy. Additional consideration of soil respiration measurements improved the simulation of small positive fluxes remarkably. Even though the model performance of the selected optimization strategies did not diverge substantially, the resulting cumulative NEE over simulation time period differed substantially. Therefore, it is concluded that data transformations, definitions of objective functions, and data sources have to be considered cautiously when a terrestrial ecosystem model is used to determine NEE by means of eddy covariance measurements. (C) 2017 Elsevier B.V. All rights reserved.
|
|
|
McKersie, B. (2015). Planning for food security in a changing climate. J. Experim. Bot., 66(12), 3435–3450.
Abstract: The Intergovernmental Panel on Climate Change and other international agencies have concluded that global crop production is at risk due to climate change, population growth, and changing food preferences. Society expects that the agricultural sciences will innovate solutions to these problems and provide food security for the foreseeable future. My thesis is that an integrated research plan merging agronomic and genetic approaches has the greatest probability of success. I present a template for a research plan based on the lessons we have learned from the Green Revolution and from the development of genetically engineered crops that may guide us to meet this expectation. The plan starts with a vision of how the crop management system could change, and I give a few examples of innovations that are very much in their infancy but have significant potential. The opportunities need to be conceptualized on a regional basis for each crop to provide a target for change. The plan gives an overview of how the tools of plant biotechnology can be used to create the genetic diversity needed to implement the envisioned changes in the crop management system, using the development of drought tolerance in maize (Zea mays L.) as an example that has led recently to the commercial release of new hybrids in the USA. The plan requires an interdisciplinary approach that integrates and coordinates research on plant biotechnology, genetics, physiology, breeding, agronomy, and cropping systems to be successful.
|
|