|
Cassardo, C., & Andreoli, V. (2019). On the Representativeness of UTOPIA Land Surface Model for Creating a Database of Surface Layer, Vegetation and Soil Variables in Piedmont Vineyards, Italy. Applied Sciences-Basel, 9(18), 3880.
Abstract: The main aim of the paper is to show how, and how many, simulations carried out using the Land Surface Model UTOPIA (University of TOrino model of land Process Interaction with Atmosphere) are representative of the micro-meteorological conditions and exchange processes at the atmosphere/biosphere interface, with a particular focus on heat and hydrologic transfers, over an area of the Piemonte (Piedmont) region, NW Italy, which is characterized by the presence of many vineyards. Another equally important aim is to understand how much the quality of the simulation outputs was influenced by the input data, whose measurements are often unavailable for long periods over country areas at an hourly basis. Three types of forcing data were used: observations from an experimental campaign carried out during the 2008, 2009, and 2010 vegetative seasons in three vineyards, and values extracted from the freely available Global Land Data Assimilation System (GLDAS, versions 2.0 and 2.1). Since GLDAS also contains the outputs of the simulations performed using the Land Surface Model NOAH, an additional intercomparison between the two models, UTOPIA and NOAH, both driven by the same GLDAS datasets, was performed. The intercomparisons were performed on the following micro-meteorological variables: net radiation, sensible and latent turbulent heat fluxes, and temperature and humidity of soil. The results of this study indicate that the methodology of employing land surface models driven by a gridded database to evaluate variables of micro-meteorological and agronomic interest in the absence of observations is suitable and gives satisfactory results, with uncertainties comparable to measurement errors, thus, allowing us to also evaluate some time trends. The comparison between GLDAS2.0 and GLDAS2.1 indicates that the latter generally produces simulation outputs more similar to the observations than the former, using both UTOPIA and NOAH models.
|
|
|
Doro, L., Jones, C., Williams, J. R., Norfleet, M. L., Izaurralde, R. C., Wang, X., et al. (2017). The Variable Saturation Hydraulic Conductivity Method for Improving Soil Water Content Simulation in EPIC and APEX Models. Vadose Zone Journal, 16(13).
Abstract: Soil water percolation is a key process in the life cycle of water in fields, watersheds, and river basins. The Environmental Policy Integrated Climate (EPIC) and the Agricultural Policy/Environmental eXtender (APEX) are continuous models developed for evaluating the environmental effects of agricultural management. Traditionally, these models have simulated soil water percolation processes using a tipping-bucket approach, with the rate of flow limited by the saturated hydraulic conductivity. This simple approach often leads to inaccuracy in simulating elevated soil water conditions where soil water content (SWC) levels may remain above field capacity under prolonged wet weather periods or limited drainage. To overcome this deficiency, a new sub-model, the variable saturation hydraulic conductivity (VSHC) method, was developed for simulating soil water percolation processes using a nonlinear equation to estimate the effective hydraulic conductivity as a function of the SWC and soil properties. The VSHC method was evaluated at three sites in the United States and two sites in Europe. In addition, a numerical solution of the Richards equation was used as a benchmark for SWC comparison. Results show that the VSHC method substantially improves the accuracy of the SWC simulation in long-term simulations, particularly during wet periods. At the watershed scale, results on the Riesel Y2 watershed indicate that the VSHC method enhances model performance in the high-flow regime of channel peak flows because of the improved estimation of SWC, which implies that the improved SWC simulation at the field scale is beneficial to hydrologic modeling at the watershed scale.
|
|
|
Hidy, D., Barcza, Z., Haszpra, L., Churkina, G., Pintér, K., & Nagy, Z. (2012). Development of the Biome-BGC model for simulation of managed herbaceous ecosystems. Ecol. Model., 226, 99–119.
Abstract: Apart from measurements, numerical models are the most convenient instruments to analyze the carbon and water balance of terrestrial ecosystems and their interactions with changing environmental conditions. The process-based Biome-BGC model is widely used to simulate the storage and flux of water, carbon, and nitrogen within the vegetation, litter, and soil of unmanaged terrestrial ecosystems. Considering herbaceous vegetation related simulations with Biome-BGC, soil moisture and growing season control on ecosystem functioning is inaccurate due to the simple soil hydrology and plant phenology representation within the model. Consequently, Biome-BGC has limited applicability in herbaceous ecosystems because (1) they are usually managed; (2) they are sensitive to soil processes, most of all hydrology; and (3) their carbon balance is closely connected with the growing season length. Our aim was to improve the applicability of Biome-BGC for managed herbaceous ecosystems by implementing several new modules, including management. A new index (heatsum growing season index) was defined to accurately estimate the first and the final days of the growing season. Instead of a simple bucket soil sub-model, a multilayer soil sub-model was implemented, which can handle the processes of runoff, diffusion and percolation. A new module was implemented to simulate the ecophysiological effect of drought stress on plant mortality. Mowing and grazing modules were integrated in order to quantify the functioning of managed ecosystems. After modifications, the Biome-BGC model was calibrated and validated using eddy covariance-based measurement data collected in Hungarian managed grassland ecosystems. Model calibration was performed based on the Bayes theorem. As a result of these developments and calibration, the performance of the model was substantially improved. Comparison with measurement-based estimate showed that the start and the end of the growing season are now predicted with an average accuracy of 5 and 4 days instead of 46 and 85 days as in the original model. Regarding the different sites and modeled fluxes (gross primary production, total ecosystem respiration, evapotranspiration), relative errors were between 18-60% using the original model and 10-18% using the developed model; squares of the correlation coefficients were between 0.02-0.49 using the original model and 0.50-0.81 using the developed model. (c) 2011 Elsevier B.V. All rights reserved.
|
|
|
Kersebaum, K. C., Boote, K. J., Jorgenson, J. S., Nendel, C., Bindi, M., Frühauf, C., et al. (2015). Analysis and classification of data sets for calibration and validation of agro-ecosystem models. Env. Model. Softw., 72, 402–417.
Abstract: Experimental field data are used at different levels of complexity to calibrate, validate and improve agroecosystem models to enhance their reliability for regional impact assessment. A methodological framework and software are presented to evaluate and classify data sets into four classes regarding their suitability for different modelling purposes. Weighting of inputs and variables for testing was set from the aspect of crop modelling. The software allows users to adjust weights according to their specific requirements. Background information is given for the variables with respect to their relevance for modelling and possible uncertainties. Examples are given for data sets of the different classes. The framework helps to assemble high quality data bases, to select data from data bases according to modellers requirements and gives guidelines to experimentalists for experimental design and decide on the most effective measurements to improve the usefulness of their data for modelling, statistical analysis and data assimilation. (C) 2015 Elsevier Ltd. All rights reserved.
|
|
|
Lai, R., Arca, P., Lagomarsino, A., Cappai, C., Seddaiu, G., Demurtas, C. E., et al. (2017). Manure fertilization increases soil respiration and creates a negative carbon budget in a Mediterranean maize (Zea mays L.)-based cropping system. Catena, 151, 202–212.
Abstract: Agronomic research is important to identify suitable options for improving soil carbon (C) sequestration and reducing soil CO2 emissions. Therefore, the objectives of this study were i) to analyse the on-farm effects of different nitrogen fertilization sources on soil respiration, ii) to explore the effect of fertilization on soil respiration sensitivity to soil temperature (T) and iii) to assess the effect of the different fertilization regimes on the soil C balance. We hypothesized that i) the soil CO2 emission dynamics in Mediterranean irrigated cropping systems were mainly affected by fertilization management and T and ii) fertilization affected the soil C budget via different C inputs and CO2 efflux. Four fertilization systems (farmyard manure, cattle slurry, cattle slurry + mineral, and mineral) were compared in a double-crop rotation based on silage maize (Zea mays L.) and a mixture of Italian ryegrass (Lolium multiflorum Lam.) and oats (Avena sativa L.). The research was performed in the dairy district of Arborea, in the coastal zone of Sardinia (Italy), from May 2011 to May 2012. The soil was a Psammentic Palexeralfs with a sandy texture (940 g sand kg− 1). The soil total respiration (SR), heterotrophic respiration (Rh), T and soil water content (SWC) were simultaneously measured in situ. The soil C balance was computed considering the Rh C losses and the soil C inputs from fertilizer and crop residues. The results showed that the maximum soil CO2 emission rates soon after the application of organic fertilizer reached values up to 12 μmol m− 2 s− 1. On average, the manure fertilizer showed significantly higher CO2 emissions, which resulted in a negative annual C balance (− 2.9 t ha− 1). T also affected the soil respiration temporal dynamics during the summer, consistently with results obtained in other temperate climatic regions that are characterized by wet summers and contrary to results from rainfed Mediterranean systems where the summer SR and Rh are constrained by the low SWC. The sensitivity of soil respiration to temperature significantly increased with C input from fertilizer. In conclusion, this research supported the hypotheses tested. Furthermore, the results indicated that i) soil CO2 efflux was significantly affected by fertilization management and T, and ii) fertilization with manure increased the soil respiration and resulted in a significantly negative soil C budget. This latter finding could be primarily explained by a reduction in productivity and, consequently, in crop residue with organic fertilization alone as compared to mineral, by the favourable SWC and T for mineralization, and by the sandy soil texture, which hindered the formation of macroaggregates and hence soil C stabilization, making fertilizer organic inputs highly susceptible to mineralization.
|
|