|
Bojar, W., Żarski, J., Knopik, L., Kuśmierek-Tomaszewska, R., Sikora, M., & Dzieża, G. (2015). Markov chain as a model of daily total precipitation and a prediction of future natural events.. Braunschweig (Germany).
Abstract: The size of arable crop yields depends on many weather factors, such as precipitation and air temperature during the vegetation period. When studying the relation between yields and precipitation, not only the total amount of precipitation, but also the occurrence of long periods without precipitation must be taken into account. The paper [Bojar et al., 2014] demonstrated that barley yield significantly statistically depends on the length of the series of days without precipitation. This paper attempts to analyse the statistical data on daily precipitation totals recorded during the January – December periods in the years 1971 – 2013 at the weather station of the University of Science and Technology in Bydgoszcz, Faculty of Agriculture and Biotechnology, in the Research Centre located in an agricultural area in the Mochle township, situated 17 kilometres from Bydgoszcz. The primary statistical operation in the study is an attempt to estimate the Markov chain order. To this end, two criteria of chain order determination are applied: BIC (Bayesian information criterion, Schwarz 1978) and AIC (Akaike information criterion, Akaike 1974). Both are based on the log-likelihood functions for transition probability of the Markov chain constructed on certain data series. Statistical analysis of precipitation totals data leads to the conclusion that both AIC and BIC indicate the 2nd order for the studied Markov chain. The proposed method of estimating the variability of precipitation occurrence in the future will be utilised to improve region-related bio-physical and economical models, and to assess the risk of extreme events in the context of growing climate hazards. It will serve as basis for a search in agriculture for solutions mitigating those hazards.
|
|
|
Bojar, W., Żarski, J., Knopik, L., Kuśmierek-Tomaszewska, R., Sikora, M., & Dzieża, G. (2015). Markov chain as a model of daily total precipitation and a prediction of future natural events.. Braunschweig (Germany).
Abstract: The size of arable crop yields depends on many weather factors, such as precipitation and air temperature during the vegetation period. When studying the relation between yields and precipitation, not only the total amount of precipitation, but also the occurrence of long periods without precipitation must be taken into account. The paper [Bojar et al., 2014] demonstrated that barley yield significantly statistically depends on the length of the series of days without precipitation. This paper attempts to analyse the statistical data on daily precipitation totals recorded during the January – December periods in the years 1971 – 2013 at the weather station of the University of Science and Technology in Bydgoszcz, Faculty of Agriculture and Biotechnology, in the Research Centre located in an agricultural area in the Mochle township, situated 17 kilometres from Bydgoszcz. The primary statistical operation in the study is an attempt to estimate the Markov chain order. To this end, two criteria of chain order determination are applied: BIC (Bayesian information criterion, Schwarz 1978) and AIC (Akaike information criterion, Akaike 1974). Both are based on the log-likelihood functions for transition probability of the Markov chain constructed on certain data series. Statistical analysis of precipitation totals data leads to the conclusion that both AIC and BIC indicate the 2nd order for the studied Markov chain. The proposed method of estimating the variability of precipitation occurrence in the future will be utilised to improve region-related bio-physical and economical models, and to assess the risk of extreme events in the context of growing climate hazards. It will serve as basis for a search in agriculture for solutions mitigating those hazards.
|
|
|
Faye, B., Webber, H., Naab, J. B., MacCarthy, D. S., Adam, M., Ewert, F., et al. (2018). Impacts of 1.5 versus 2.0 degrees C on cereal yields in the West African Sudan Savanna. Environ. Res. Lett., 13(3), 034014.
Abstract: To reduce the risks of climate change, governments agreed in the Paris Agreement to limit global temperature rise to less than 2.0 degrees C above pre-industrial levels, with the ambition to keep warming to 1.5 degrees C. Charting appropriate mitigation responses requires information on the costs of mitigating versus associated damages for the two levels of warming. In this assessment, a critical consideration is the impact on crop yields and yield variability in regions currently challenged by food insecurity. The current study assessed impacts of 1.5 degrees C versus 2.0 degrees C on yields of maize, pearl millet and sorghum in the West African Sudan Savanna using two crop models that were calibrated with common varieties from experiments in the region with management reflecting a range of typical sowing windows. As sustainable intensification is promoted in the region for improving food security, simulations were conducted for both current fertilizer use and for an intensification case (fertility not limiting). With current fertilizer use, results indicated 2% units higher losses for maize and sorghum with 2.0 degrees C compared to 1.5 degrees C warming, with no change in millet yields for either scenario. In the intensification case, yield losses due to climate change were larger than with current fertilizer levels. However, despite the larger losses, yields were always two to three times higher with intensification, irrespective of the warming scenario. Though yield variability increased with intensification, there was no interaction with warming scenario. Risk and market analysis are needed to extend these results to understand implications for food security.
|
|