|
Abdelrahman, H. M., Olk, D. C., Dinnes, D., Ventrella, D., Miano, T., & Cocozza, C. (2016). Occurrence and abundance of carbohydrates and amino compounds in sequentially extracted labile soil organic matter fractions. Journal of Soils and Sediments, 16(10), 2375–2384.
Abstract: Purpose The study aimed to describe the carbohydrates and amino compounds content in soil, the light fraction (LF), the >53 μm particulate organic matter (POM), and the mobile humic acid (MHA) fraction and to find out whether the carbohydrates and amino compounds can be used to explain the origin of SOM fractions. Materials and methods Soil samples were collected from two agricultural fields managed under organic farming in southern Italy. The LF, the POM, and the MHA were sequentially extracted from each soil sample then characterized. Seven neutral sugars and 19 amino compounds (amino acids and amino sugars) were determined in each soil sample and its correspondent fractions. Results and discussion The MHA contained less carbohydrate than the LF or the POM but its carbohydrates, although dominated by arabinose, were relatively with larger microbial contribution as revealed by the mannose/xylose ratio. The amino compounds were generally less in the LF or the POM than in the MHA, while the fungal (aspartic and serine) and bacterial (alanine and glycine) amino acids were larger in the MHA than in the LF or the POM, underlining the microbial contribution to the MHA. Results from both sites indicated that total carbohydrates content decreased moving from the LF (younger fraction) to the MHA (older fraction), which seems to follow a decomposition continuum of organic matter in the soil-plant system. Conclusions The study showed that the MHA is a labile humified fraction of soil C due to its content of carbohydrates and concluded that the content of carbohydrates and amino compounds in the LF, the POM and the MHA can depict the nature of these fractions and their cycling pattern and response to land management.
|
|
|
Bellocchi, G., Rivington, M., Matthews, K., & Acutis, M. (2015). Deliberative processes for comprehensive evaluation of agroecological models. A review. Agron. Sust. Developm., 35(2), 589–605.
Abstract: The use of biophysical models in agroecology has increased in the last few decades for two main reasons: the need to formalize empirical knowledge and the need to disseminate model-based decision support for decision makers (such as farmers, advisors, and policy makers). The first has encouraged the development and use of mathematical models to enhance the efficiency of field research through extrapolation beyond the limits of site, season, and management. The second reflects the increasing need (by scientists, managers, and the public) for simulation experimentation to explore options and consequences, for example, future resource use efficiency (i.e., management in sustainable intensification), impacts of and adaptation to climate change, understanding market and policy responses to shocks initiated at a biophysical level under increasing demand, and limited supply capacity. Production concerns thus dominate most model applications, but there is a notable growing emphasis on environmental, economic, and policy dimensions. Identifying effective methods of assessing model quality and performance has become a challenging but vital imperative, considering the variety of factors influencing model outputs. Understanding the requirements of stakeholders, in respect of model use, logically implies the need for their inclusion in model evaluation methods. We reviewed the use of metrics of model evaluation, with a particular emphasis on the involvement of stakeholders to expand horizons beyond conventional structured, numeric analyses. Two major topics are discussed: (1) the importance of deliberative processes for model evaluation, and (2) the role computer-aided techniques may play to integrate deliberative processes into the evaluation of agroecological models. We point out that (i) the evaluation of agroecological models can be improved through stakeholder follow-up, which is a key for the acceptability of model realizations in practice, (ii) model credibility depends not only on the outcomes of well-structured, numerically based evaluation, but also on less tangible factors that may need to be addressed using complementary deliberative processes, (iii) comprehensive evaluation of simulation models can be achieved by integrating the expectations of stakeholders via a weighting system of preferences and perception, (iv) questionnaire-based surveys can help understand the challenges posed by the deliberative process, and (v) a benefit can be obtained if model evaluation is conceived in a decisional perspective and evaluation techniques are developed at the same pace with which the models themselves are created and improved. Scientific knowledge hubs are also recognized as critical pillars to advance good modeling practice in relation to model evaluation (including access to dedicated software tools), an activity which is frequently neglected in the context of time-limited framework programs.
|
|
|
Cantelaube, P., & Jayet, P. (2012). Geographical downscaling of outputs provided by an economic farm model calibrated at the regional level. Land Use Policy, 29, 35–44.
Abstract: There is a strong need for accurate and spatially referenced information regarding policy making and model linkage. This need has been expressed by land users, and policy and decision makers in order to estimate both spatially and locally the impacts of European policy (like the Common Agricultural Policy) and/or global changes on farm-groups. These entities are defined according to variables such as altitude, economic size and type of farming (referring to land uses). European farm-groups are provided through the Farm Accountancy Data Network (FADN) as statistical information delivered at regional level. The aim of the study is to map locally farm-group probabilities within each region. The mapping of the farm-groups is done in two steps: (1) by mapping locally the co-variables associated to the farm-groups, i.e. altitude and land uses; (2) by using regional FADN data as a priori knowledge for transforming land uses and altitude information into farm-groups location probabilities within each region. The downscaling process focuses on the land use mapping since land use data are originally point information located every 18 km. Interpolation of land use data is done at 100 m by using co-variables like land cover, altitude, climate and soil data which are continuous layers usually provided at fine resolution. Once the farm-groups are mapped, European Policy and global changes scenarios are run through an agro-economic model for assessing environmental impacts locally.
|
|
|
Castañeda-Vera, A., Leffelaar, P. A., Álvaro-Fuentes, J., Cantero-Martínez, C., & Mínguez, M. I. (2015). Selecting crop models for decision making in wheat insurance. European Journal of Agronomy, 68, 97–116.
Abstract: In crop insurance, the accuracy with which the insurer quantifies the actual risk is highly dependent on the availability on actual yield data. Crop models might be valuable tools to generate data on expected yields for risk assessment when no historical records are available. However, selecting a crop model for a specific objective, location and implementation scale is a difficult task. A look inside the different crop and soil modules to understand how outputs are obtained might facilitate model choice. The objectives of this paper were (i) to assess the usefulness of crop models to be used within a crop insurance analysis and design and (ii) to select the most suitable crop model for drought risk assessment in semi-arid regions in Spain. For that purpose first, a pre-selection of crop models simulating wheat yield under rainfed growing conditions at the field scale was made, and second, four selected models (Aquacrop, CERES-Wheat, CropSyst and WOFOST) were compared in terms of modelling approaches, process descriptions and model outputs. Outputs of the four models for the simulation of winter wheat growth are comparable when water is not limiting, but differences are larger when simulating yields under rainfed conditions. These differences in rainfed yields are mainly related to the dissimilar simulated soil water availability and the assumed linkages with dry matter formation. We concluded that for the simulation of winter wheat growth at field scale in such semi-arid conditions, CERES-Wheat and CropSyst are preferred. WOFOST is a satisfactory compromise between data availability and complexity when detail data on soil is limited. Aquacrop integrates physiological processes in some representative parameters, thus diminishing the number of input parameters, what is seen as an advantage when observed data is scarce. However, the high sensitivity of this model to low water availability limits its use in the region considered. Contrary to the use of ensembles of crop models, we endorse that efforts be concentrated on selecting or rebuilding a model that includes approaches that better describe the agronomic conditions of the regions in which they will be applied. The use of such complex methodologies as crop models is associated with numerous sources of uncertainty, although these models are the best tools available to get insight in these complex agronomic systems. (C) 2015 Elsevier B.V. All rights reserved.
|
|
|
Dono, G., Cortignani, R., Dell’Unto, D., Deligios, P., Doro, L., Lacetera, N., et al. (2016). Winners and losers from climate change in agriculture: Insights from a case study in the Mediterranean basin. Agricultural Systems, 147, 65–75.
Abstract: The Mediterranean region has always shown a marked inter-annual variability in seasonal weather, creating uncertainty in decisional processes of cultivation and livestock breeding that should not be neglected when modeling farmers’ adaptive responses. This is especially relevant when assessing the impact of climate change (CC), which modifies the atmospheric variability and generates new uncertainty conditions, and the possibility of adaptation of agriculture. Our analysis examines this aspect reconstructing the effects of inter-annual climate variability in a diversified farming district that well represents a wide range of rainfed and irrigated agricultural systems in the Mediterranean area. We used a Regional Atmospheric Modelling System and a weather generator to generate 150 stochastic years of the present and near future climate. Then, we implemented calibrated crop and livestock models to estimate the corresponding productive responses in the form of probability distribution functions (PDFs) under the two climatic conditions. We assumed these PDFs able to represent the expectations of farmers in a discrete stochastic programming (DSP) model that reproduced their economic behaviour under uncertainty conditions. The comparison of the results in the two scenarios provided an assessment of the impact of CC, also taking into account the possibility of adjustment allowed by present technologies and price regimes. The DSP model is built in blocks that represent the farm typologies operating in the study area, each one with its own resource endowment, decisional constraints and economic response. Under this latter aspect, major differences emerged among farm typologies and sub-zones of the study area. A crucial element of differentiation was water availability, since only irrigated C3 crops took full advantage from the fertilization effect of increasing atmospheric CO2 concentration. Rainfed crop production was depressed by the expected reduction of spring rainfall associated to the higher temperatures. So, a dualism emerges between the smaller impact on crop production in the irrigated plain sub-zone, equipped with collective water networks and abundant irrigation resources, and the major negative impact in the hilly area, where these facilities and resources are absent. However intensive dairy farming was also negatively affected in terms of milk production and quality, and cattle mortality because of the increasing summer temperatures. This provides explicit guidance for addressing strategic adaptation policies and for framing farmers’ perception of CC, in order to help them to develop an awareness of the phenomena that are already in progress, which is a prerequisite for effective adaptation responses.
|
|