|
Bindi, M., Palosuo, T., Trnka, M., & Semenov, M. A. (2015). Modelling climate change impacts on crop production for food security INTRODUCTION. Clim. Res., 65, 3–5.
Abstract: Process-based crop models that synthesise the latest scientific understanding of biophysical processes are currently the primary scientific tools available to assess potential impacts of climate change on crop production. Important obstacles are still present, however, and must be overcome for improving crop modelling application in integrated assessments of risk, of sustainability and of crop-production resilience in the face of climate change (e.g. uncertainty analysis, model integration, etc.). The research networks MACSUR and AGMIP organised the CropM International Symposium and Workshop in Oslo, on 10-12 February 2014, and present this CR Special, discussing the state-of-the-art-as well as future perspectives-of crop modelling applications in climate change risk assessment, including the challenges of integrated assessments for the agricultural sector.
|
|
|
Challinor, A. J., Smith, M. S., & Thornton, P. (2013). Use of agro-climate ensembles for quantifying uncertainty and informing adaptation. Agricultural and Forest Meteorology, 170, 2–7.
Abstract: ► Introduces the special issue on Agricultural prediction using climate model ensembles. ► Discuss remaining scientific challenges. ► Develops distinction between projection- and utility-based ensemble modelling. ► Recommendations made RE modelling and the analysis and reporting of uncertainty. Significant progress has been made in the use of ensemble agricultural and climate modelling, and observed data, to project future productivity and to develop adaptation options. An increasing number of agricultural models are designed specifically for use with climate ensembles, and improved methods to quantify uncertainty in both climate and agriculture have been developed. Whilst crop–climate relationships are still the most common agricultural study of this sort, on-farm management, hydrology, pests, diseases and livestock are now also examined. This paper introduces all of these areas of progress, with more detail being found in the subsequent papers in the special issue. Remaining scientific challenges are discussed, and a distinction is developed between projection- and utility-based approaches to agro-climate ensemble modelling. Recommendations are made regarding the manner in which uncertainty is analysed and reported, and the way in which models and data are used to make inferences regarding the future. A key underlying principle is the use of models as tools from which information is extracted, rather than as competing attempts to represent reality.
|
|
|
Dumont, B., Leemans, V., Ferrandis, S., Bodson, B., Destain, J. - P., & Destain, M. - F. (2014). Assessing the potential of an algorithm based on mean climatic data to predict wheat yield. Precision Agric., 15(3), 255–272.
Abstract: The real-time non-invasive determination of crop biomass and yield prediction is one of the major challenges in agriculture. An interesting approach lies in using process-based crop yield models in combination with real-time monitoring of the input climatic data of these models, but unknown future weather remains the main obstacle to reliable yield prediction. Since accurate weather forecasts can be made only a short time in advance, much information can be derived from analyzing past weather data. This paper presents a methodology that addresses the problem of unknown future weather by using a daily mean climatic database, based exclusively on available past measurements. It involves building climate matrix ensembles, combining different time ranges of projected mean climate data and real measured weather data originating from the historical database or from real-time measurements performed in the field. Used as an input for the STICS crop model, the datasets thus computed were used to perform statistical within-season biomass and yield prediction. This work demonstrated that a reliable predictive delay of 3-4 weeks could be obtained. In combination with a local micrometeorological station that monitors climate data in real-time, the approach also enabled us to (i) predict potential yield at the local level, (ii) detect stress occurrence and (iii) quantify yield loss (or gain) drawing on real monitored climatic conditions of the previous few days.
|
|
|
Lehtonen, H. (2015). Evaluating adaptation and the production development of Finnish agriculture in climate and global change. Agricultural and Food Science, 24(3), 219–234.
Abstract: Agricultural product prices and policies influence the development of crop yields under climate change through farm level management decisions. On this basis, five main scenarios were specified for agricultural commodity prices and crop yields. An economic agricultural sector model was used in order to assess the impacts of the scenarios on production, land use and farm income in Finland. The results suggest that falling crop yields, if realized due to low prices and restrictive policies, will result in decreasing crop and livestock production and increasing nutrient surplus. Slowly increasing crop yields could stabilise production and increase farm income. Significantly higher crop prices and yields are required, however, for any marked increase in production in Finland. Cereals production would increase relatively more than livestock production, if there were high prices for agricultural products. This is explained by abundant land resources, a high opportunity cost of labour and policies maintaining current dairy and beef production.
|
|
|
Liu, X., Lehtonen, H., Purola, T., Pavlova, Y., Rötter, R., & Palosuo, T. (2016). Dynamic economic modelling of crop rotations with farm management practices under future pest pressure. Agricultural Systems, 144, 65–76.
Abstract: Agricultural practice is facing multiple challenges under volatile commodity markets, inevitable climate change, mounting pest pressure and various other environment-related constraints. The objective of this research is to present a dynamic optimization model of crop rotations and farm management and show its suitability for economic analysis over a 30 year time period. In this model, we include management practices such as fertilization, fungicide treatment and liming, and apply it in a region in Southwestern Finland. Results show that (i) growing pest pressure favours the cultivation of wheat-oats and wheat-oilseeds combinations, while (ii) market prices largely determine the crops in the rotation plan and the specific management practices adopted. The flexibility of our model can also be utilized in evaluating the value of other management options such as new cultivars under different projections of future climate and market conditions.
|
|