|
Makowski, D. (2017). A simple Bayesian method for adjusting ensemble of crop model outputs to yield observations. Europ. J. Agron., 88, 76–83.
Abstract: Multi-model forecasting has drawn some attention in crop science for evaluating effect of climate change on crop yields. The principle is to run several individual process-based crop models under several climate scenarios in order to generate ensembles of output values. This paper describes a simple Bayesian method – called Bayes linear method- for updating ensemble of crop model outputs using yield observations. The principle is to summarize the ensemble of crop model outputs by its mean and variance, and then to adjust these two quantities to yield observations in order to reduce uncertainty. The adjusted mean and variance combine two sources of information, i.e., the ensemble of crop model outputs and the observations. Interestingly, with this method, observations collected under a given climate scenario can be used to adjust mean and variance of the model ensemble under a different scenario. Another advantage of the proposed method is that it does not rely on a separate calibration of each individual crop model. The uncertainty reduction resulting from the adjustment of an ensemble of crop models to observations was assessed in a numerical application. The implementation of the Bayes linear method systematically reduced uncertainty, but the results showed the effectiveness of this method varied in function of several factors, especially the accuracy of the yield observation, and the covariance between the crop model output and the observation. (C) 2015 Elsevier B.V. All rights reserved.
|
|
|
Rötter, R. P., Tao, F., Höhn, J. G., & Palosuo, T. (2015). Use of crop simulation modelling to aid ideotype design of future cereal cultivars. J. Experim. Bot., 66(12), 3463–3476.
Abstract: A major challenge of the 21st century is to achieve food supply security under a changing climate and roughly a doubling in food demand by 2050 compared to present, the majority of which needs to be met by the cereals wheat, rice, maize, and barley. Future harvests are expected to be especially threatened through increased frequency and severity of extreme events, such as heat waves and drought, that pose particular challenges to plant breeders and crop scientists. Process-based crop models developed for simulating interactions between genotype, environment, and management are widely applied to assess impacts of environmental change on crop yield potentials, phenology, water use, etc. During the last decades, crop simulation has become important for supporting plant breeding, in particular in designing ideotypes, i.e. ‘model plants’, for different crops and cultivation environments. In this review we (i) examine the main limitations of crop simulation modelling for supporting ideotype breeding, (ii) describe developments in cultivar traits in response to climate variations, and (iii) present examples of how crop simulation has supported evaluation and design of cereal cultivars for future conditions. An early success story for rice demonstrates the potential of crop simulation modelling for ideotype breeding. Combining conventional crop simulation with new breeding methods and genetic modelling holds promise to accelerate delivery of future cereal cultivars for different environments. Robustness of model-aided ideotype design can further be enhanced through continued improvements of simulation models to better capture effects of extremes and the use of multi-model ensembles.
|
|