|
Balkovič, J., van der Velde, M., Schmid, E., Skalský, R., Khabarov, N., Obersteiner, M., et al. (2013). Pan-European crop modelling with EPIC: Implementation, up-scaling and regional crop yield validation. Agricultural Systems, 120, 61–75.
Abstract: Justifiable usage of large-scale crop model simulations requires transparent, comprehensive and spatially extensive evaluations of their performance and associated accuracy. Simulated crop yields of a Pan-European implementation of the Environmental Policy Integrated Climate (EPIC) crop model were satisfactorily evaluated with reported regional yield data from EUROSTAT for four major crops, including winter wheat, rainfed and irrigated maize, spring barley and winter rye. European-wide land use, elevation, soil and daily meteorological gridded data were integrated in GIS and coupled with EPIC. Default EPIC crop and biophysical process parameter values were used with some minor adjustments according to suggestions from scientific literature. The model performance was improved by spatial calculations of crop sowing densities, potential heat units, operation schedules, and nutrient application rates. EPIC performed reasonable in the simulation of regional crop yields, with long-term averages predicted better than inter-annual variability: linear regression R-2 ranged from 0.58 (maize) to 0.91 (spring barley) and relative estimation errors were between +/- 30% for most of the European regions. The modelled and reported crop yields demonstrated similar responses to driving meteorological variables. However, EPIC performed better in dry compared to wet years. A yield sensitivity analysis of crop nutrient and irrigation management factors and cultivar specific characteristics for contrasting regions in Europe revealed a range in model response and attainable yields. We also show that modelled crop yield is strongly dependent on the chosen PET method. The simulated crop yield variability was lower compared to reported crop yields. This assessment should contribute to the availability of harmonised and transparently evaluated agricultural modelling tools in the EU as well as the establishment of modelling benchmarks as a requirement for sound and ongoing policy evaluations in the agricultural and environmental domains. (C) 2013 The Authors. Published by Elsevier Ltd. All rights reserved.
|
|
|
Dono, G., Cortignani, R., Doro, L., Giraldo, L., Ledda, L., Pasqui, M., et al. (2013). Adapting to uncertainty associated with short-term climate variability changes in irrigated Mediterranean farming systems. Agricultural Systems, 117, 1–12.
Abstract: Short-term perspectives appear to be relevant in formulating adaptation measures to changed climate variability (CCV) as a part of the European Rural Development Policy (RDP). Indeed, short-run CCV is the variation that farmers would perceive to such an extent that a political demand would be generated for adapting support measures. This study evaluates some relevant agronomic and economic impacts of CCV as modelled in a near future time period at the catchment scale in a rural district in Sardinia (Italy). The effects of CCV are assessed in relation to the availability of irrigation water and the irrigation needs of maize. The Environmental Policy Integrated Climate (EPIC) model was used to simulate the impact of key climatic variables on the irrigation water requirements and yields of maize. A three-stage discrete stochastic programming model was then applied to simulate management and economic responses to those changes. The overall economic impact of a simulated CCV was found to be primarily caused by reduced stability in the future supply of irrigation water. Adaptations to this instability will most likely lead to a higher level of groundwater extraction and a reduction in the demand for labour. Changed climate variability will most likely reduce the income potential of small-scale farming. The most CCV-vulnerable farm typologies were identified, and the implications were discussed in relation to the development of adaptation measures within the context of the Common Agricultural Policy of European Union. (C) 2013 Elsevier Ltd. All rights reserved.
|
|
|
Dono, G., Cortignani, R., Doro, L., Giraldo, L., Ledda, L., Pasqui, M., et al. (2013). An integrated assessment of the impacts of changing climate variability on agricultural productivity and profitability in an irrigated Mediterranean catchment. Water Resource Manage., 27(10), 3607–3622.
Abstract: Climate change is likely to have a profound effect on many agricultural variables, although the extent of its influence will vary over the course of the annual farm management cycle. Consequently, the effect of different and interconnected physical, technical and economic factors must be modeled in order to estimate the effects of climate change on agricultural productivity. Such modeling commonly makes use of indicators that summarize the among environmental factors that are considered when farmers plan their activities. This study uses net evapotranspiration (ETN), estimated using EPIC, as a proxy index for the physical factors considered by farmers when managing irrigation. Recent trends suggest that the probability distribution function of ETN may continue to change in the near future due to changes in the irrigation needs of crops. Also, water availability may continue to vary due to changes in the rainfall regime. The impacts of the uncertainties related to these changes on costs are evaluated using a Discrete Stochastic Programming model representing an irrigable Mediterranean area where limited water is supplied from a reservoir. In this context, adaptation to climate change can be best supported by improvements to the collective irrigation systems, rather than by measures aimed at individual farms such as those contained within the rural development policy.
|
|
|
Mitter, H., Schmid, E., & Sinabell, F. (2015). Integrated modelling of protein crop production responses to climate change and agricultural policy scenarios in Austria. Clim. Res., 65, 205–220.
Abstract: Climate and policy changes are likely to affect protein crop production and thus trade balances in Europe, which is highly dependent on imports. Exemplified for Austrian cropland, we developed an integrated modelling framework to analyze climate change and policy scenario impacts on protein crop production and environmental outcomes. The integrated modelling framework consists of a statistical climate change model, a crop rotation model, the bio-physical process model EPIC, and the economic bottom-up land use optimization model BiomAT. EPIC is applied to simulate annual dry matter crop yields for different crop management practices including crop rotations, fertilization intensities, and irrigation, as well as for 3 regional climate change scenarios until 2040 at a 1 km grid resolution. BiomAT maximizes total gross margins by optimizing land use choices and crop management practices subject to spatially explicit cropland endowments. The model results indicate that changes in agricultural policy conditions, cropland use, and higher flexibility in crop management practices may reduce protein import dependence under changing climatic conditions. Expanding protein crop production is most attractive in south-eastern Austria with its Central European continental climate where maize is most often replaced in crop rotations. However, the acreage of protein crops is limited by agronomically suitable cropland. An intended side effect is the reduction of nitrogen fertilizer inputs by about 0.1% if total protein crop production increases by 1%.
|
|
|
Schönhart, M., Mitter, H., Schmid, E., Heinrich, G., & Gobiet, A. (2014). Integrated analysis of climate change impacts and adaptation measures in Austrian agriculture. German Journal of Agricultural Economics, 63(3), 156–176.
Abstract: An integrated modelling framework (IMF) has been developed and applied to analyse climate change impacts and the effectiveness of adaptation measures in Austrian agriculture. The IMF couples the crop rotation model CropRota, the bio-physical process model EPIC and the bottom-up economic land use model PASMA at regional level (NUTS-3) considering agri-environmental indicators. Four contrasting regional climate model (RCM) simulations represent climate change until 2050. The RCM simulations are applied to a baseline and three adaptation and policy scenarios. Climate change increases crop productivity on national average in the IMF. Changes in average gross margins at national level range from 0% to + 5% between the baseline and the three adaptation and policy scenarios. The impacts at NUTS-3 level range from -5% to + 7% between the baseline and the three adaptation and policy scenarios. Adaptation measures such as planting of winter cover crops, reduced tillage and irrigation are effective in reducing yield losses, increasing revenues, or in improving environmental states under climate change. Future research should account for extreme weather events in order to analyse whether average productivity gains at the aggregated level suffice to cover costs from expected higher climate variability.
|
|