|
De Sanctis, G., Roggero, P. P., Seddaiu, G., Orsini, R., Porter, C. H., & Jones, J. W. (2012). Long-term no tillage increased soil organic carbon content of rain-fed cereal systems in a Mediterranean area. European Journal of Agronomy, 40, 18–27.
Abstract: The differential impact on soil organic carbon (SOC) of applying no tillage (NT) compared to conventional tillage (CT, i.e. mouldboard ploughing), along with three rates of nitrogen (N) fertilizer application (0,90 and 180 kg ha(-1) y(-1)), was studied under rain-fed Mediterranean conditions in a long-term experiment based on a durum wheat-maize rotation, in which crop residues were left on the soil (NT) or incorporated (CT). Observed SOC content following 8 and 12 years of continuous treatment application was significantly higher in the top 10 cm of the soil under NT than CT, but it was similar in the 10-40 cm layer. NT grain yields for both maize and durum wheat were below those attained under CT (on average 32% and 14% lower respectively) at a given rate of N fertilizer application. Soil, climate and crop data over 5 years were used to calibrate DSSAT model in order to simulate the impact of the different management practices over a 50-year period. Good agreement was obtained between observed and simulated values for crops grain yield, above-ground biomass and observed SOC values. Results from the simulations showed that under NT the weeds growing during the intercrop fallow period made a significant contribution to the observed SOC increase. When the contribution of the weed fallow was considered, NT significantly increased SOC in the top 40 cm of the soil at an average rate of 0.43, 0.31 and 0.03 t ha(-1) per year, respectively for 180,90 and 0 kg N ha(-1) year(-1), within the simulated 50 years. Under CT, a significant SOC increase was simulated under N180 and a significant decrease when no fertilizer was supplied.
|
|
|
Faye, B., Webber, H., Naab, J. B., MacCarthy, D. S., Adam, M., Ewert, F., et al. (2018). Impacts of 1.5 versus 2.0 degrees C on cereal yields in the West African Sudan Savanna. Environ. Res. Lett., 13(3), 034014.
Abstract: To reduce the risks of climate change, governments agreed in the Paris Agreement to limit global temperature rise to less than 2.0 degrees C above pre-industrial levels, with the ambition to keep warming to 1.5 degrees C. Charting appropriate mitigation responses requires information on the costs of mitigating versus associated damages for the two levels of warming. In this assessment, a critical consideration is the impact on crop yields and yield variability in regions currently challenged by food insecurity. The current study assessed impacts of 1.5 degrees C versus 2.0 degrees C on yields of maize, pearl millet and sorghum in the West African Sudan Savanna using two crop models that were calibrated with common varieties from experiments in the region with management reflecting a range of typical sowing windows. As sustainable intensification is promoted in the region for improving food security, simulations were conducted for both current fertilizer use and for an intensification case (fertility not limiting). With current fertilizer use, results indicated 2% units higher losses for maize and sorghum with 2.0 degrees C compared to 1.5 degrees C warming, with no change in millet yields for either scenario. In the intensification case, yield losses due to climate change were larger than with current fertilizer levels. However, despite the larger losses, yields were always two to three times higher with intensification, irrespective of the warming scenario. Though yield variability increased with intensification, there was no interaction with warming scenario. Risk and market analysis are needed to extend these results to understand implications for food security.
|
|
|
Malone, R. W., Kersebaum, K. C., Kaspar, T. C., Ma, L., Jaynes, D. B., & Gillette, K. (2017). Winter rye as a cover crop reduces nitrate loss to subsurface drainage as simulated by HERMES. Agric. Water Manage., 184, 156–169.
Abstract: HERMES is a widely used agricultural system model; however, it has never been tested for simulating N loss to subsurface drainage. Here, we integrated a simple drain flbw component into HERMES. We then compared the predictions to four years of data (2002-2005) from central Iowa fields in corn-oybean with winter rye as a cover crop (CC) and without winter rye (NCC). We also compared the HERMES predictions to the more complex Root Zone Water Quality Model (RZWQM) predictions for the same dataset. The average annual observed and simulated N loss to drain flow were 43.8 and 44.4 kg N/ha (NCC) and 17.6 and 18.9 kg N/ha (CC). The slightly over predicted N loss for CC was because of over predicted nitrate concentration, which may be partly caused by slightly under predicted average annual rye shoot N (observed and simulated values were 47.8 and 46.0 kg N/ha). Also, recent research from the site suggests that the soil field capacity may be greater in CC while we used the same soil parameters for both treatments. A local sensitivity analysis suggests that increased field capacity affects HERMES simulations, which includes reduced drain flow nitrate concentrations, increased denitrification, and reduced drain flow volume. HERMES-simulated cumulative monthly drain flow and annual drain flow were reasonable compared to field data and HERMES performance was comparable to other published drainage model tests. Unlike the RZWQM simulations, however, the modified HERMES did riot accurately simulate the year to year variability in nitrate concentration difference between NCC and CC, possibly due in part to the lack of partial mixing and displacement of the soil solution. The results suggest that 1) the relatively simple model HERMES is a promising tool to estimate annual N loss to drain flow under corn-soybean rotations with winter rye as a cover crop and 2) soil field capacity is a critical parameter to investigate to more thoroughly understand and appropriately model denitrification and N losses to subsurface drainage. Published by Elsevier B.V.
|
|
|
Mittenzwei, K., Persson, T., Höglind, M., & Kværnø, S. (2017). Combined effects of climate change and policy uncertainty on the agricultural sector in Norway. Agric. Syst., 153, 118–126.
Abstract: Highlights • A framework to study climate and policy uncertainty in agriculture is presented. • Combining both sources of uncertainty has ambiguous effects on agriculture. • Uncertainty needs to be highlighted in modelling tools for policy analysis. Abstract Farmers are exposed to climate change and uncertainty about how that change will develop. As farm incomes, in Norway and elsewhere, greatly depend on government subsidies, the risk of a policy change constitutes an additional uncertainty source. Hence, climate and policy uncertainty could substantially impact agricultural production and farm income. However, these sources of uncertainty have, so far, rarely been combined in food production analyses. The aim of this study was to determine the effects of a combination of policy and climate uncertainty on agricultural production, land use, and social welfare in Norway. Output yield distributions of spring wheat and timothy, a major forage grass, from simulations with the weather-driven crop models, CSM-CERES-Wheat and, LINGRA, were processed in the a stochastic version Jordmod, a price-endogenous spatial economic sector model of the Norwegian agriculture. To account for potential effects of climate uncertainty within a given future greenhouse gas emission scenario on farm profitability, effects on conditions that represented the projected climate for 2050 under the emission scenario A1B from the 4th assessment report of the Intergovernmental Panel on Climate Change and four Global Climate Models (GCM) was investigated. The uncertainty about the level of payment rates at the time farmers make their management decisions was handled by varying the distribution of payment rates applied in the Jordmod model. These changes were based on the change in the overall level of agricultural support in the past. Three uncertainty scenarios were developed and tested: one with climate change uncertainty, another with payment rate uncertainty, and a third where both types of uncertainty were combined. The three scenarios were compared with results from a deterministic scenario where crop yields and payment rates were constant. Climate change resulted in on average 9% lower cereal production, unchanged grass production and more volatile crop yield as well as 4% higher farm incomes on average compared to the deterministic scenario. The scenario with a combination of climate change and policy uncertainty increased the mean farm income more than a scenario with only one source of uncertainty. On the other hand, land use and farm labour were negatively affected under these conditions compared to the deterministic case. Highlighting the potential influence of climate change and policy uncertainty on the performance of the farm sector our results underline the potential error in neglecting either of these two uncertainties in studies of agricultural production, land use and welfare.
|
|
|
Ventrella, D., Charfeddine, M., Giglio, L., & Castellini, M. (2012). Application of DSSAT models for an agronomic adaptation strategy under climate change in Southern of Italy: optimum sowing and transplanting time for winter durum wheat and tomato. Ital. J. Agron., 7(1), 16.
Abstract: Many climate change studies have been carried out in different parts of the world to assess climate change vulnerability and adaptation capacity of agricultural crops for certain environments characterized from climatic, pedological and agronomical point of view. The objective of this study was to analyse the productive response of winter durum wheat and tomato to climate change and sowing/transplanting time in one of the most productive areas of Italy (i.e. Capitanata, Puglia), using CERES-Wheat and CROPGRO cropping system models. Three climatic datasets were used: i) a single dataset (50 km x 50 km) provided by the JRC European centre for the period 1975- 2005; two datasets from HadCM3 for the IPCC A2 GHG scenario for time slices with +2°C (centred over 2030-2060) and +5°C (centred over 2070-2099), respectively. All three datasets were used to generate synthetic climate series using a weather simulator (model LARS-WG). No negative yield effects of climate change were observed for winter durum wheat with delayed sowing (from 330 to 345 DOY) increasing the average dry matter grain yield under forecasted scenarios. Instead, the warmer temperatures were primarily shown to accelerate the phenology, resulting in decreased yield for tomato under the + 5°C future climate scenario. In general, under global temperature increase by 5°C, early transplanting times could minimize the negative impact of climate change on crop productivity but the intensity of this effect was not sufficient to restore the current production levels of tomato cultivated in southern Italy.
|
|