|
Eyshi Rezaei, E., Siebert, S., & Ewert, F. (2015). Impact of data resolution on heat and drought stress simulated for winter wheat in Germany. European Journal of Agronomy, 65, 69–82.
Abstract: Heat and drought stress can reduce crop yields considerably which is increasingly assessed with crop models for larger areas. Applying these models originally developed for the field scale at large spatial extent typically implies the use of input data with coarse resolution. Little is known about the effect of data resolution on the simulated impact of extreme events like heat and drought on crops. Hence, in this study the effect of input and output data aggregation on simulated heat and drought stress and their impact on yield of winter wheat is systematically analyzed. The crop model SIMPLACE was applied for the period 1980-2011 across Germany at a resolution of 1 km x 1 km. Weather and soil input data and model output data were then aggregated to 10 km x 10 km, 25 km x 25 km, 50 km x 50 km and 100 km x 100 km resolution to analyze the aggregation effect on heat and drought stress and crop yield. We found that aggregation of model input and output data barely influenced the mean and median of heat and drought stress reduction factors and crop yields simulated across Germany. However, data aggregation resulted in less spatial variability of model results and a reduced severity of simulated stress events, particularly for regions with high heterogeneity in weather and soil conditions. Comparisons of simulations at coarse resolution with those at high resolution showed distinct patterns of positive and negative deviations which compensated each other so that aggregation effects for large regions were small for mean or median yields. Therefore, modelling at a resolution of 100 km x 100 km was sufficient to determine mean wheat yield as affected by heat and drought stress for Germany. Further research is required to clarify whether the results can be generalized across crop models differing in structure and detail. Attention should also be given to better understand the effect of data resolution on interactions between heat and drought impacts. (C) 2015 Elsevier B.V. All rights reserved.
|
|
|
Müller, C., & Robertson, R. D. (2014). Projecting future crop productivity for global economic modeling. Agric. Econ., 45(1), 37–50.
Abstract: Assessments of climate change impacts on agricultural markets and land-use patterns rely on quantification of climate change impacts on the spatial patterns of land productivity. We supply a set of climate impact scenarios on agricultural land productivity derived from two climate models and two biophysical crop growth models to account for some of the uncertainty inherent in climate and impact models. Aggregation in space and time leads to information losses that can determine climate change impacts on agricultural markets and land-use patterns because often aggregation is across steep gradients from low to high impacts or from increases to decreases. The four climate change impact scenarios supplied here were designed to represent the most significant impacts (high emission scenario only, assumed ineffectiveness of carbon dioxide fertilization on agricultural yields, no adjustments in management) but are consistent with the assumption that changes in agricultural practices are covered in the economic models. Globally, production of individual crops decrease by 10-38% under these climate change scenarios, with large uncertainties in spatial patterns that are determined by both the uncertainty in climate projections and the choice of impact model. This uncertainty in climate impact on crop productivity needs to be considered by economic assessments of climate change.
|
|
|
Ruane, A. C., Hudson, N. I., Asseng, S., Camarrano, D., Ewert, F., Martre, P., et al. (2016). Multi-wheat-model ensemble responses to interannual climate variability. Env. Model. Softw., 81, 86–101.
Abstract: We compare 27 wheat models’ yield responses to interannual climate variability, analyzed at locations in Argentina, Australia, India, and The Netherlands as part of the Agricultural Model Intercomparison and Improvement Project (AgMIP) Wheat Pilot. Each model simulated 1981-2010 grain yield, and we evaluate results against the interannual variability of growing season temperature, precipitation, and solar radiation. The amount of information used for calibration has only a minor effect on most models’ climate response, and even small multi-model ensembles prove beneficial. Wheat model clusters reveal common characteristics of yield response to climate; however models rarely share the same cluster at all four sites indicating substantial independence. Only a weak relationship (R-2 <= 0.24) was found between the models’ sensitivities to interannual temperature variability and their response to long-term warming, suggesting that additional processes differentiate climate change impacts from observed climate variability analogs and motivating continuing analysis and model development efforts. Published by Elsevier Ltd.
|
|
|
Semenov, M. A., & Stratonovitch, P. (2013). Designing high-yielding wheat ideotypes for a changing climate. Food Energy Secur., 2(3), 185–196.
Abstract: Global warming is characterized by shifts in weather patterns and increases in climatic variability and extreme events. New wheat cultivars will be required for a rapidly changing environment, putting severe pressure on breeders who must select for climate conditions which can only be predicted with a great degree of uncertainty. To assist breeders to identify key wheat traits for improvements under climate change, wheat ideotypes can be designed and tested in silico using a wheat simulation model for a wide range of future climate scenarios predicted by global climate models. A wheat ideotype is represented by a set of cultivar parameters in a model, which could be optimized for best wheat performance under projected climate change. As an example, high-yielding wheat ideotypes were designed at two contrasting European sites for the 2050 (A1B) climate scenario. Simulations showed that wheat yield potential can be substantially increased for new ideotypes compared with current wheat varieties under climate change. The main factors contributing to yield increase were improvement in light conversion efficiency, extended duration of grain filling resulting in a higher harvest index, and optimal phenology.
|
|
|
Toscano, P., Ranieri, R., Matese, A., Vaccari, F. P., Gioli, B., Zaldei, A., et al. (2012). Durum wheat modeling: The Delphi system, 11 years of observations in Italy. European Journal of Agronomy, 43, 108–118.
Abstract: ► Delphi system, based on AFRCWHEAT2 model, for durum wheat forecast. ► AFRCWHEAT2 model was calibrated and validated for three years. ► A scenario approach was applied to simulation of durum wheat yield. ► Operational mode for eleven years in rainfed and water limiting conditions. ► Accurate forecast as an useful planning tool. Crop models are frequently used in ecology, agronomy and environmental sciences for simulating crop and environmental variables at a discrete time step. The aim of this work was to test the predictive capacity of the Delphi system, calibrated and determined for each pedoclimatic factor affecting durum wheat during phenological development. at regional scale. We present an innovative system capable of predicting spatial yield variation and temporal yield fluctuation in long-term analysis, that are the main purposes of regional crop simulation study. The Delphi system was applied to simulate growth and yield of durum wheat in the major Italian supply basins (Basilicata, Capitanata, Marche, Tuscany). The model was validated and evaluated for three years (1995-1997) at 11 experimental fields and then used in operational mode for eleven years (1999-2009), showing an excellent/good accuracy in predicting grain yield even before maturity for a wide range of growing conditions in the Mediterranean climate, governed by different annual weather patterns. The results were evaluated on the basis of regression and normalized root mean squared error with known crop yield statistics at regional level. (c) 2012 Elsevier B.V. All rights reserved.
|
|