|
Hlavinka, P., Kersebaum, K. C., Dubrovský, M., Fischer, M., Pohanková, E., Balek, J., et al. (2015). Water balance, drought stress and yields for rainfed field crop rotations under present and future conditions in the Czech Republic. Clim. Res., 65, 175–192.
Abstract: Continuous crop rotation modeling is a prospective trend that, compared to 1-crop or discrete year-by-year calculations, can provide more accurate results that are closer to real conditions. The goal of this study was to compare the water balance and yields estimated by the HERMES crop rotation model for present and future climatic conditions in the Czech Republic. Three locations were selected, representing important agricultural regions with different climatic conditions. Crop rotation (spring barley, silage maize, winter wheat, winter rape) was simulated from 1981-2080. The 1981-2010 period was covered by measured meteorological data, while 2011-2080 was represented by a transient synthetic weather series from the weather generator M& Rfi. The data were based on 5 circulation models, representing an ensemble of 18 CMIP3 global circulation models, to preserve much of the uncertainty of the original ensemble. Two types of crop management were compared, and the influences of soil quality, increasing atmospheric CO2 and adaptation measures (i. e. sowing date changes) were also considered. Results suggest that under a ‘dry’ scenario (such as GFCM21), C-3 crops in drier regions will be devastated for a significant number of seasons. Negative impacts are likely even on premium-quality soils regardless of flexible sowing dates and accounting for increasing CO2 concentrations. Moreover, in dry conditions, the use of crop rotations with catch crops may have negative impacts, exacerbating the soil water deficit for subsequent crops. This approach is a promising method for determining how various management strategies and crop rotations can affect yields as well as water, carbon and nitrogen cycling.
|
|
|
Martre, P., He, J., Le Gouis, J., & Semenov, M. A. (2015). In silico system analysis of physiological traits determining grain yield and protein concentration for wheat as influenced by climate and crop management. J. Experim. Bot., 66(12), 3581–3598.
Abstract: Genetic improvement of grain yield (GY) and grain protein concentration (GPC) is impeded by large genotype×environment×management interactions and by compensatory effects between traits. Here global uncertainty and sensitivity analyses of the process-based wheat model SiriusQuality2 were conducted with the aim of identifying candidate traits to increase GY and GPC. Three contrasted European sites were selected and simulations were performed using long-term weather data and two nitrogen (N) treatments in order to quantify the effect of parameter uncertainty on GY and GPC under variable environments. The overall influence of all 75 plant parameters of SiriusQuality2 was first analysed using the Morris method. Forty-one influential parameters were identified and their individual (first-order) and total effects on the model outputs were investigated using the extended Fourier amplitude sensitivity test. The overall effect of the parameters was dominated by their interactions with other parameters. Under high N supply, a few influential parameters with respect to GY were identified (e.g. radiation use efficiency, potential duration of grain filling, and phyllochron). However, under low N, >10 parameters showed similar effects on GY and GPC. All parameters had opposite effects on GY and GPC, but leaf and stem N storage capacity appeared as good candidate traits to change the intercept of the negative relationship between GY and GPC. This study provides a system analysis of traits determining GY and GPC under variable environments and delivers valuable information to prioritize model development and experimental work.
|
|