|
Weindl, I., Bodirsky, B. L., Rolinski, S., Biewald, A., Lotze-Campen, H., Muller, C., et al. (2017). Livestock production and the water challenge of future food supply: Implications of agricultural management and dietary choices. Global Environmental Change-Human and Policy Dimensions, 47, 121–132.
Abstract: Human activities use more than half of accessible freshwater, above all for agriculture. Most approaches for reconciling water conservation with feeding a growing population focus on the cropping sector. However, livestock production is pivotal to agricultural resource use, due to its low resource-use efficiency upstream in the food supply chain. Using a global modelling approach, we quantify the current and future contribution of livestock production, under different demand-and supply-side scenarios, to the consumption of “green” precipitation water infiltrated into the soil and “blue” freshWater withdrawn from rivers, lakes and reservoirs. Currently, cropland feed production accounts for 38% of crop water consumption and grazing involves 29% of total agricultural water consumption (9990 km(3) yr(-1)). Our analysis shows that changes in diets and livestock productivity have substantial implications for future consumption of agricultural blue water (19-36% increase compared to current levels) and green water (26-69% increase), but they can, at best, slow down trends of rising water requirements for decades to come. However, moderate productivity reductions in highly intensive livestock systems are possible without aggravating water scarcity. Productivity gains in developing regions decrease total agricultural water consumption, but lead to expansion of irrigated agriculture, due to the shift from grassland/green water to cropland/blue water resources. While the magnitude of the livestock water footprint gives cause for concern, neither dietary choices nor changes in livestock productivity will solve the water challenge of future food supply, unless accompanied by dedicated water protection policies.
|
|
|
Weindl, I., Popp, A., Bodirsky, B. L., Rolinski, S., Lotze-Campen, H., Biewald, A., et al. (2017). Livestock and human use of land: Productivity trends and dietary choices as drivers of future land and carbon dynamics. Global And Planetary Change, 159, 1–10.
Abstract: Land use change has been the primary driving force of human alteration of terrestrial ecosystems. With 80% of agricultural land dedicated to livestock production, the sector is an important lever to attenuate land requirements for food production and carbon emissions from land use change. In this study, we quantify impacts of changing human diets and livestock productivity on land dynamics and depletion of carbon stored in vegetation, litter and soils. Across all investigated productivity pathways, lower consumption of livestock products can substantially reduce deforestation (47-55%) and cumulative carbon losses (34-57%). On the supply side, already minor productivity growth in extensive livestock production systems leads to substantial CO2 emission abatement, but the emission saving potential of productivity gains in intensive systems is limited, also involving trade-offs with soil carbon stocks. If accounting for uncertainties related to future trade restrictions, crop yields and pasture productivity, the range of projected carbon savings from changing diets increases to 23-78%. Highest abatement of carbon emissions (63-78%) can be achieved if reduced consumption of animal-based products is combined with sustained investments into productivity increases in plant production. Our analysis emphasizes the importance to integrate demand- and supply-side oriented mitigation strategies and to combine efforts in the crop and livestock sector to enable synergies for climate protection.
|
|