|
Klosterhalfen, A., Herbst, M., Weihermueller, L., Graf, A., Schmidt, M., Stadler, A., et al. (2017). Multi-site calibration and validation of a net ecosystem carbon exchange model for croplands. Ecol. Model., 363, 137–156.
Abstract: Croplands play an important role in the carbon budget of many regions. However, the estimation of their carbon balance remains difficult due to diversity and complexity of the processes involved. We report the coupling of a one-dimensional soil water, heat, and CO2 flux model (SOILCO2), a pool concept of soil carbon turnover (RothC), and a crop growth module (SUCROS) to predict the net ecosystem exchange (NEE) of carbon. The coupled model, further referred to as AgroC, was extended with routines for managed grassland as well as for root exudation and root decay. In a first step, the coupled model was applied to two winter wheat sites and one upland grassland site in Germany. The model was calibrated based on soil water content, soil temperature, biometric, and soil respiration measurements for each site, and validated in terms of hourly NEE measured with the eddy covariance technique. The overall model performance of AgroC was sufficient with a model efficiency above 0.78 and a correlation coefficient above 0.91 for NEE. In a second step, AgroC was optimized with eddy covariance NEE measurements to examine the effect of different objective functions, constraints, and data-transformations on estimated NEE. It was found that NEE showed a distinct sensitivity to the choice of objective function and the inclusion of soil respiration data in the optimization process. In particular, both positive and negative day- and nighttime fluxes were found to be sensitive to the selected optimization strategy. Additional consideration of soil respiration measurements improved the simulation of small positive fluxes remarkably. Even though the model performance of the selected optimization strategies did not diverge substantially, the resulting cumulative NEE over simulation time period differed substantially. Therefore, it is concluded that data transformations, definitions of objective functions, and data sources have to be considered cautiously when a terrestrial ecosystem model is used to determine NEE by means of eddy covariance measurements. (C) 2017 Elsevier B.V. All rights reserved.
|
|
|
Sándor, R., Barcza, Z., Hidy, D., Lellei-Kovács, E., Ma, S., & Bellocchi, G. (2016). Modelling of grassland fluxes in Europe: evaluation of two biogeochemical models. Agric. Ecosyst. Environ., 215, 1–19.
Abstract: Two independently developed simulation models – the grassland-specific PaSim and the biome-generic Biome-BGC MuSo (BBGC MuSo) – linking climate, soil, vegetation and management to ecosystem biogeochemical cycles were compared in a simulation of carbon (C) and water fluxes. The results were assessed against eddy-covariance flux data from five observational grassland sites representing a range of conditions in Europe: Grillenburg in Germany, Laqueuille in France with both extensive and intensive management, Monte Bondone in Italy and Oensingen in Switzerland. Model comparison (after calibration) gave substantial agreement, the performances being marginal to acceptable for weekly-aggregated gross primary production and ecosystem respiration (R-2 similar to 0.66 – 0.91), weekly evapotranspiration (R-2 similar to 0.78 – 0.94), soil water content in the topsoil (R-2 similar to 0.1 -0.7) and soil temperature (R-2 similar to 0.88 – 0.96). The bias was limited to the range -13 to 9 g C m(-2) week(-1) for C fluxes (-11 to 8 g C m(-2) week(-1) in case of BBGC MuSo, and -13 to 9 g C m(-2) week(-1) in case of PaSim) and -4 to 6 mm week for water fluxes (with BBGC MuSo providing somewhat higher estimates than PaSim), but some higher relative root mean square errors indicate low accuracy for prediction, especially for net ecosystem exchange The sensitivity of simulated outputs to changes in atmospheric carbon dioxide concentration ([CO2]), temperature and precipitation indicate, with certain agreement between the two models, that C outcomes are dominated by [CO2] and temperature gradients, and are less due to precipitation. ET rates decrease with increasing [CO2] in PaSim (consistent with experimental knowledge), while lack of appropriate stomatal response could be a limit in BBGC MuSo responsiveness. Results of the study indicate that some of the errors might be related to the improper representation of soil water content and soil temperature. Improvement is needed in the model representations of soil processes (especially soil water balance) that strongly influence the biogeochemical cycles of managed and unmanaged grasslands. (C) 2015 Elsevier B.V. All rights reserved.
|
|
|
Sándor, R., Ma, S., Acutis, M., Barcza, Z., Ben Touhami, H., Doro, L., et al. (2015). Uncertainty in simulating biomass yield and carbon–water fluxes from grasslands under climate change. Advances in Animal Biosciences, 6(01), 49–51.
|
|