|
Gabaldón-Leal, C., Webber, H., Otegui, M. E., Slafer, G. A., Ordonez, R. A., Gaiser, T., et al. (2016). Modelling the impact of heat stress on maize yield formation. Field Crops Research, 198, 226–237.
Abstract: The frequency and intensity of extreme high temperature events are expected to increase with climate change. Higher temperatures near anthesis have a large negative effect on maize (Zea mays, L.) grain yield. While crop growth models are commonly used to assess climate change impacts on maize and other crops, it is only recently that they have accounted for such heat stress effects, despite limited field data availability for model evaluation. There is also increasing awareness but limited testing of the importance of canopy temperature as compared to air temperature for heat stress impact simulations. In this study, four independent irrigated field trials with controlled heating imposed using polyethylene shelters were used to develop and evaluate a heat stress response function in the crop modeling framework SIMPLACE, in which the Lintul5 crop model was combined with a canopy temperature model. A dataset from Argentina with the temperate hybrid Nidera AX 842 MG (RM 119) was used to develop a yield reduction function based on accumulated hourly stress thermal time above a critical temperature of 34 degrees C. A second dataset from Spain with a FAO 700 cultivar was used to evaluate the model with daily weather inputs in two sets of simulations. The first was used to calibrate SIMPLACE for conditions with no heat stress, and the second was used to evaluate SIMPLACE under conditions of heat stress using the reduction factor obtained with the Argentine dataset. Both sets of simulations were conducted twice; with the heat stress function alternatively driven with air and simulated canopy temperature. Grain yield simulated under heat stress conditions improved when canopy temperature was used instead of air temperature (RMSE equal to 175 and 309 g m(-2), respectively). For the irrigated and high radiative conditions, raising the critical threshold temperature for heat stress to 39 degrees C improved yield simulation using air temperature (RMSE: 221 gm(-2)) without the need to simulate canopy temperature (RMSE: 175 gm(-2)). However, this approach of adjusting thresholds is only likely to work in environments where climatic variables and the level of soil water deficit are constant, such as irrigated conditions and are not appropriate for rainfed production conditions. (C) 2016 Elsevier B.V. All rights reserved.
|
|
|
Hlavinka, P., Kersebaum, K. C., Dubrovský, M., Fischer, M., Pohanková, E., Balek, J., et al. (2015). Water balance, drought stress and yields for rainfed field crop rotations under present and future conditions in the Czech Republic. Clim. Res., 65, 175–192.
Abstract: Continuous crop rotation modeling is a prospective trend that, compared to 1-crop or discrete year-by-year calculations, can provide more accurate results that are closer to real conditions. The goal of this study was to compare the water balance and yields estimated by the HERMES crop rotation model for present and future climatic conditions in the Czech Republic. Three locations were selected, representing important agricultural regions with different climatic conditions. Crop rotation (spring barley, silage maize, winter wheat, winter rape) was simulated from 1981-2080. The 1981-2010 period was covered by measured meteorological data, while 2011-2080 was represented by a transient synthetic weather series from the weather generator M& Rfi. The data were based on 5 circulation models, representing an ensemble of 18 CMIP3 global circulation models, to preserve much of the uncertainty of the original ensemble. Two types of crop management were compared, and the influences of soil quality, increasing atmospheric CO2 and adaptation measures (i. e. sowing date changes) were also considered. Results suggest that under a ‘dry’ scenario (such as GFCM21), C-3 crops in drier regions will be devastated for a significant number of seasons. Negative impacts are likely even on premium-quality soils regardless of flexible sowing dates and accounting for increasing CO2 concentrations. Moreover, in dry conditions, the use of crop rotations with catch crops may have negative impacts, exacerbating the soil water deficit for subsequent crops. This approach is a promising method for determining how various management strategies and crop rotations can affect yields as well as water, carbon and nitrogen cycling.
|
|
|
Martre, P., He, J., Le Gouis, J., & Semenov, M. A. (2015). In silico system analysis of physiological traits determining grain yield and protein concentration for wheat as influenced by climate and crop management. J. Experim. Bot., 66(12), 3581–3598.
Abstract: Genetic improvement of grain yield (GY) and grain protein concentration (GPC) is impeded by large genotype×environment×management interactions and by compensatory effects between traits. Here global uncertainty and sensitivity analyses of the process-based wheat model SiriusQuality2 were conducted with the aim of identifying candidate traits to increase GY and GPC. Three contrasted European sites were selected and simulations were performed using long-term weather data and two nitrogen (N) treatments in order to quantify the effect of parameter uncertainty on GY and GPC under variable environments. The overall influence of all 75 plant parameters of SiriusQuality2 was first analysed using the Morris method. Forty-one influential parameters were identified and their individual (first-order) and total effects on the model outputs were investigated using the extended Fourier amplitude sensitivity test. The overall effect of the parameters was dominated by their interactions with other parameters. Under high N supply, a few influential parameters with respect to GY were identified (e.g. radiation use efficiency, potential duration of grain filling, and phyllochron). However, under low N, >10 parameters showed similar effects on GY and GPC. All parameters had opposite effects on GY and GPC, but leaf and stem N storage capacity appeared as good candidate traits to change the intercept of the negative relationship between GY and GPC. This study provides a system analysis of traits determining GY and GPC under variable environments and delivers valuable information to prioritize model development and experimental work.
|
|
|
Perego, A., Giussani, A., Sanna, M., Fumagalli, M., Carozzi, M., Alfieri, L., et al. (2013). The ARMOSA simulation crop model: overall features, calibration and validation results. Italian Journal of Agrometeorology, 3, 23–38.
Abstract: ARMOSA is a dynamic simulation model which was developed to simulate crop growth and development, water and nitrogen dynamics under different pedoclimatic conditions and cropping systems in the arable land. The model is meant to be a tool for the evaluation of the impact of different crop management practices on soil nitrogen and carbon cycles and groundwater nitrate pollution. A large data set collected over three to six years from six monitoring sites in Lombardia plain was used to calibrate and validate the model parameters. Measured meteorological data, soil chemical and physical characterizations, crop-related data of different cropping systems allowed for a proper parameterization. Fit indexes showed the reliability of the model in adequately predicting crop-related variables, such as above ground biomass (RRMSE=11.18, EF=0.94, r=0.97), Leaf Area Index maximum value (RRMSE=8.24, EF=0.37, r=0.72), harvest index (RRMSE=19.4, EF=0.32, r=0.74), and crop N uptake (RRMSE=20.25, EF=0.69, r=0.85). Using two different one-year data set from each monitoring site, the model was calibrated and validated, getting to encouraging results: RRMSE=6.28, EF=0.52, r=0.68 for soil water content at different depths, and RRMSE=34.89, EF=0.59, r=0.75 for soil NO3-N content along soil profile. The simulated N leaching was in full agreement with measured data (RRMSE=26.62, EF=0.88, r=0.98).
|
|
|
Rötter, R. P., Palosuo, T., Kersebaum, K. - C., Angulo, C., Bindi, M., Ewert, F., et al. (2012). Simulation of spring barley yield in different climatic zones of Northern and Central Europe: A comparison of nine crop models. Field Crops Research, 133, 23–36.
Abstract: ► We compared nine crop simulation models for spring barley at seven sites in Europe. ► Applying crop models with restricted calibration leads to high uncertainties. ► Multi-crop model mean yield estimates were in good agreement with observations. ► The degree of uncertainty for simulated grain yield of barley was similar to winter wheat. ► We need more suitable data enabling us to verify different processes in the models. In this study, the performance of nine widely used and accessible crop growth simulation models (APES-ACE, CROPSYST, DAISY, DSSAT-CERES, FASSET, HERMES, MONICA, STICS and WOFOST) was compared during 44 growing seasons of spring barley (Hordeum vulgare L) at seven sites in Northern and Central Europe. The aims of this model comparison were to examine how different process-based crop models perform at multiple sites across Europe when applied with minimal information for model calibration of spring barley at field scale, whether individual models perform better than the multi-model mean, and what the uncertainty ranges are in simulated grain yields. The reasons for differences among the models and how results for barley compare to winter wheat are discussed. Regarding yield estimation, best performing based on the root mean square error (RMSE) were models HERMES, MONICA and WOFOST with lowest values of 1124, 1282 and 1325 (kg ha(-1)), respectively. Applying the index of agreement (IA), models WOFOST, DAISY and HERMES scored best having highest values (0.632, 0.631 and 0.585, respectively). Most models systematically underestimated yields, whereby CROPSYST showed the highest deviation as indicated by the mean bias error (MBE) (-1159 kg ha(-1)). While the wide range of simulated yields across all sites and years shows the high uncertainties in model estimates with only restricted calibration, mean predictions from the nine models agreed well with observations. Results of this paper also show that models that were more accurate in predicting phenology were not necessarily the ones better estimating grain yields. Total above-ground biomass estimates often did not follow the patterns of grain yield estimates and, thus, harvest indices were also different. Estimates of soil moisture dynamics varied greatly. In comparison, even though the growing cycle for winter wheat is several months longer than for spring barley, using RMSE and IA as indicators, models performed slightly, but not significantly, better in predicting wheat yields. Errors in reproducing crop phenology were similar, which in conjunction with the shorter growth cycle of barley has higher effects on accuracy in yield prediction.
|
|