|
Angulo, C., Rötter, R., Lock, R., Enders, A., Fronzek, S., & Ewert, F. (2013). Implication of crop model calibration strategies for assessing regional impacts of climate change in Europe. Agricultural and Forest Meteorology, 170, 32–46.
Abstract: Process-based crop simulation models are increasingly used in regional climate change impact studies, but little is known about the implications of different calibration strategies on simulated yields. This study aims to assess the importance of region-specific calibration of five important field crops (winter wheat, winter barley, potato, sugar beet and maize) across 25 member countries of the European Union (EU25). We examine three calibration strategies and their implications on spatial and temporal yield variability in response to climate change: (i) calculation of phenology parameters only, (ii) consideration of both phenology calibration and a yield correction factor and (iii) calibration of phenology and selected growth processes. The analysis is conducted for 533 climate zones, considering 24 years of observed yield data (1983-2006). The best performing strategy is used to estimate the impacts of climate change, increasing CO2 concentration and technology development on yields for the five crops across EU25, using seven climate change scenarios for the period 2041-2064. Simulations and calibrations are performed with the crop model LINTUL2 combined with a calibration routine implemented in the modelling interface LINTUL-FAST. The results show that yield simulations improve if growth parameters are considered in the calibration for individual regions (strategy 3); e.g. RMSE values for simulated winter wheat yield are 2.36, 1.10 and 0.70 Mg ha(-1) for calibration strategies 1, 2 and 3, respectively. The calibration strategy did not only affect the model simulations under reference climate but also the extent of the simulated climate change impacts. Applying the calibrated model for impact assessment revealed that climatic change alone will reduce crop yields. Consideration of the effects of increasing CO2 concentration and technology development resulted in yield increases for all crops except maize (i.e. the negative effects of climate change were outbalanced by the positive effects of CO2 and technology change), with considerable differences between scenarios and regions. Our simulations also suggest some increase in yield variability due to climate change which, however, is less pronounced than the differences among scenarios which are particularly large when the effects of CO2 concentration and technology development are considered. Our results stress the need for region-specific calibration of crop models used for Europe-wide assessments. Limitations of the considered strategies are discussed. We recommend that future work should focus on obtaining more comprehensive, high quality data with a finer resolution allowing application of improved strategies for model calibration that better account for spatial differences and changes over time in the growth and development parameters used in crop models. (c) 2012 Elsevier B.V. All rights reserved.
|
|
|
Ewert, F., Rötter, R. P., Bindi, M., Webber, H., Trnka, M., Kersebaum, K. C., et al. (2015). Crop modelling for integrated assessment of risk to food production from climate change. Env. Model. Softw., 72, 287–303.
Abstract: The complexity of risks posed by climate change and possible adaptations for crop production has called for integrated assessment and modelling (IAM) approaches linking biophysical and economic models. This paper attempts to provide an overview of the present state of crop modelling to assess climate change risks to food production and to which extent crop models comply with IAM demands. Considerable progress has been made in modelling effects of climate variables, where crop models best satisfy IAM demands. Demands are partly satisfied for simulating commonly required assessment variables. However, progress on the number of simulated crops, uncertainty propagation related to model parameters and structure, adaptations and scaling are less advanced and lagging behind IAM demands. The limitations are considered substantial and apply to a different extent to all crop models. Overcoming these limitations will require joint efforts, and consideration of novel modelling approaches.
|
|
|
Lorite, I. J., Gabaldon-Leal, C., Ruiz-Ramos, M., Belaj, A., de la Rosa, R., Leon, L., et al. (2018). Evaluation of olive response and adaptation strategies to climate change under semi-arid conditions. Agric. Water Manage., 204, 247–261.
Abstract: AdaptaOlive is a simplified physically-based model that has been developed to assess the behavior of olive under future climate conditions in Andalusia, southern Spain. The integration of different approaches based on experimental data from previous studies, combined with weather data from 11 climate models, is aimed at overcoming the high degree of uncertainty in the simulation of the response of agricultural systems under predicted climate conditions. The AdaptaOlive model was applied in a representative olive orchard in the Baeza area, one of the main producer zone in Spain, with the cultivar ‘Picual’. Simulations for the end of the 21st century showed olive oil yield increases of 7.1 and 28.9% under rainfed and full irrigated conditions, respectively, while irrigation requirements decreased between 0.5 and 6.2% for full irrigation and regulated deficit irrigation, respectively. These effects were caused by the positive impact of the increase in atmospheric CO2 that counterbalanced the negative impacts of the reduction in rainfall. The high degree of uncertainty associated with climate projections translated into a high range of yield and irrigation requirement projections, confirming the need for an ensemble of climate models in climate change impact assessment. The AdaptaOlive model also was applied for evaluating adaptation strategies related to cultivars, irrigation strategies and locations. The best performance was registered for cultivars with early flowering dates and regulated deficit irrigation. Thus, in the Baeza area full irrigation requirements were reduced by 12% and the yield in rainfed conditions increased by 7% compared with late flowering cultivars. Similarly, regulated deficit irrigation requirements and yield were reduced by 46% and 18%, respectively, compared with full irrigation. The results confirm the promise offered by these strategies as adaptation measures for managing an olive crop under semi-arid conditions in a changing climate.
|
|
|
Tao, F., Palosuo, T., Roetter, R. P., Hernandez Diaz-Ambrona, C. G., Ines Minguez, M., Semenov, M. A., et al. (2020). Why do crop models diverge substantially in climate impact projections? A comprehensive analysis based on eight barley crop models. Agricultural and Forest Meteorology, 281, 107851.
Abstract: Robust projections of climate impact on crop growth and productivity by crop models are key to designing effective adaptations to cope with future climate risk. However, current crop models diverge strongly in their climate impact projections. Previous studies tried to compare or improve crop models regarding the impact of one single climate variable. However, this approach is insufficient, considering that crop growth and yield are affected by the interactive impacts of multiple climate change factors and multiple interrelated biophysical processes. Here, a new comprehensive analysis was conducted to look holistically at the reasons why crop models diverge substantially in climate impact projections and to investigate which biophysical processes and knowledge gaps are key factors affecting this uncertainty and should be given the highest priorities for improvement. First, eight barley models and eight climate projections for the 2050s were applied to investigate the uncertainty from crop model structure in climate impact projections for barley growth and yield at two sites: Jokioinen, Finland (Boreal) and Lleida, Spain (Mediterranean). Sensitivity analyses were then conducted on the responses of major crop processes to major climatic variables including temperature, precipitation, irradiation, and CO2, as well as their interactions, for each of the eight crop models. The results showed that the temperature and CO2 relationships in the models were the major sources of the large discrepancies among the models in climate impact projections. In particular, the impacts of increases in temperature and CO2 on leaf area development were identified as the major causes for the large uncertainty in simulating changes in evapotranspiration, above-ground biomass, and grain yield. Our findings highlight that advancements in understanding the basic processes and thresholds by which climate warming and CO2 increases will affect leaf area development, crop evapotranspiration, photosynthesis, and grain formation in contrasting environments are needed for modeling their impacts.
|
|
|
Trnka, M., Feng, S., Semenov, M. A., Olesen, J. E., Kersebaum, K. C., Roetter, R. P., et al. (2019). Mitigation efforts will not fully alleviate the increase in water scarcity occurrence probability in wheat-producing areas. Sci. Adv., 5(9), eaau2406.
Abstract: Global warming is expected to increase the frequency and intensity of severe water scarcity (SWS) events, which negatively affect rain-fed crops such as wheat, a key source of calories and protein for humans. Here, we develop a method to simultaneously quantify SWS over the world’s entire wheat-growing area and calculate the probabilities of multiple/sequential SWS events for baseline and future climates. Our projections show that, without climate change mitigation (representative concentration pathway 8.5), up to 60% of the current wheat-growing area will face simultaneous SWS events by the end of this century, compared to 15% today. Climate change stabilization in line with the Paris Agreement would substantially reduce the negative effects, but they would still double between 2041 and 2070 compared to current conditions. Future assessments of production shocks in food security should explicitly include the risk of severe, prolonged, and near- simultaneous droughts across key world wheat-producing areas.
|
|