|
Bellocchi, G., & Ehrhardt, F. (2014). Collaborations with initiatives and projects outside MACSUR and AgMIP – Grassland & Livestock..
|
|
|
Bellocchi, G., & Ma, S. (2014). Results of uncalibrated grassland model runs (Vol. 3).
Abstract: This deliverable focuses on the some illustrative results obtained with the grassland models selected (D-L2.1.1) to simulate biomass and flux data from grassland sites in Europe and peri-Mediterranean regions (D-L2.1.1 and D-L2.1.2). This is a blind exercise, carried out without model calibration. The complete set of results will include simulations from calibrated models. The results shown are illustrative of the methodology adopted for grassland model intercomparison in MACSUR. The insights gained from this ongoing study are relevant for some crop and vegetation models, which in some cases proved comparable to grassland-specific models to simulate biomass data from managed grasslands. The results reported here cannot be considered conclusive. Additional results will be published as they become available together with calibration results, as well as the comprehensive evaluation of models with fuzzy logic-based indicators. No Label
|
|
|
Bellocchi, G., Martin, R., Shtiliyanova, A., Ben Touhami, H., & Carrère, P. (2014). Vul’Clim – Climate change vulnerability studies in the region Auvergne (France). FACCE MACSUR Mid-term Scientific Conference, 3(S) Sassari, Italy.
Abstract: The region Auvergne (France) is a major livestock territory in Europe (beef and dairy cattle with permanent grasslands), with a place in climate change regional studies assisting policy makers and actors in identifying adaptation and mitigation measures. Vul’Clim is a research grant (Bourse Recherche Filière) of the region Auvergne (February 2014-September 2015) to develop model-based vulnerability analysis approaches for a detailed assessment of climate change impacts at regional scale. Its main goal is the creation of a computer-aided platform for vulnerability assessment of grasslands, in interaction with stakeholders from a cluster of eco-enterprises. A modelling engine provided by the mechanistic, biogeochemical model PaSim (Pasture Simulation model) is the core of the platform. An action studies the changes of scales by varying the granularity of the data available at a given scale (e.g. climate data supplied by global scenarios) to let them being exploited at another scale (e.g. high-resolution pixels). Another action is to develop an assessment framework linking modelling tools to entry data and outputs, including a variety of components: data-entry manager at different spatial resolutions; automatic computation of indicators; gap-filling and data quality check; simulation kernel with the model(s) used; device to represent results as maps and integrated indicators.
|
|
|
Bellocchi, G., Martin, R., Shtiliyanova, A., Ben Touhami, H., & Carrère, P. (2014). Vul’Clim – Climate change vulnerability studies in the region Auvergne (France) (Vol. 3).
Abstract: The region Auvergne (France) is a major livestock territory in Europe (beef and dairy cattle with permanent grasslands), with a place in climate change regional studies assisting policy makers and actors in identifying adaptation and mitigation measures. Vul’Clim is a research grant (Bourse Recherche Filière) of the region Auvergne (February 2014-September 2015) to develop model-based vulnerability analysis approaches for a detailed assessment of climate change impacts at regional scale. Its main goal is the creation of a computer-aided platform for vulnerability assessment of grasslands, in interaction with stakeholders from a cluster of eco-enterprises. A modelling engine provided by the mechanistic, biogeochemical model PaSim (Pasture Simulation model) is the core of the platform. An action studies the changes of scales by varying the granularity of the data available at a given scale (e.g. climate data supplied by global scenarios) to let them being exploited at another scale (e.g. high-resolution pixels). Another action is to develop an assessment framework linking modelling tools to entry data and outputs, including a variety of components: data-entry manager at different spatial resolutions; automatic computation of indicators; gap-filling and data quality check; simulation kernel with the model(s) used; device to represent results as maps and integrated indicators. No Label
|
|
|
Bellocchi, G., Rivington, M., & Acutis, M. (2014). Deliberative processes for comprehensive evaluation of agro-ecological models. FACCE MACSUR Mid-term Scientific Conference, 3(S) Sassari, Italy.
Abstract: Biophysical models are acknowledged for examining interactions of agro-ecological systems and fostering communication between scientists, managers and the public. As the role of models grows in importance, there is an increase in the need to assess their quality and performance (Bellocchi et al., 2010). However, the heterogeneity of factors influencing model outputs makes it difficult a full assessment of model features. Where models are used with or for stakeholders then model credibility depends not only on the outcomes of well-structured statistical evaluation but also less tangible factors may need to be addressed using complementary deliberative processes. To expand our horizons in the evaluation of crop and grassland models, approaches have been reviewed with emphasis on using combined metrics. Comprehensive evaluation of simulation models was developed to integrate expectations of stakeholders via a weighting system where lower and upper fuzzy bounds are applied to a set of evaluation metrics. A questionnaire-based survey helped understanding the multi-faceted knowledge and experience required and the substantial challenges posed by the deliberative process. MACSUR knowledge hub holds potential to advance in good modelling practice in relation with model evaluation (including access to appropriate software tools), an activity which is frequently neglected in the context of time-limited projects.
|
|