Home | << 1 2 3 4 5 6 7 8 9 10 >> [11–20] |
Bellocchi, G., Rivington, M., & Acutis, M. (2014). Protocol for model evaluation (Vol. 3).
Abstract: This deliverable focuses on the development of methods for model evaluation in order to have unambiguous indications derived from the use of several evaluation metrics. The information about model quality is aggregated into a single indicator using a fuzzy expert system that can be applied to a wide range of model estimates where suitable test data are available. This is a cross-cutting activity between CropM (C1.4) and LiveM (L2.2). No Label
|
Ben Touhami, H., & Bellocchi, G. (2014). Bayesian calibration of the Pasture Simulation model (PaSim) to simulate emissions from long-term grassland sites: a European perspective.. |
Bennett, E., Carpenter, S. R., Gordon, L. J., Ramankutty, N., Balvanera, P., Campbell, B., et al. (2014). Toward a more resilient agriculture. The Solutions Journal, 5(5), 65–75.
Abstract: Agriculture is a key driver of change in the Anthropocene. It is both a critical factor for human well-being and development and a major driver of environmental decline. As the human population expands to more than 9 billion by 2050, we will be compelled to find ways to adequately feed this population while simultaneously decreasing the environmental impact of agriculture, even as global change is creating new circumstances to which agriculture must respond. Many proposals to accomplish this dual goal of increasing agricultural production while reducing its environmental impact are based on increasing the efficiency of agricultural production relative to resource use and relative to unintended outcomes such as water pollution, biodiversity loss, and greenhouse gas emissions. While increasing production efficiency is almost certainly necessary, it is unlikely to be sufficient and may in some instances reduce long-term agricultural resilience, for example, by degrading soil and increasing the fragility of agriculture to pest and disease outbreaks and climate shocks. To encourage an agriculture that is both resilient and sustainable, radically new approaches to agricultural development are needed. These approaches must build on a diversity of solutions operating at nested scales, and they must maintain and enhance the adaptive and transformative capacity needed to respond to disturbances and avoid critical thresholds. Finding such approaches will require that we encourage experimentation, innovation, and learning, even if they sometimes reduce short-term production efficiency in some parts of the world.
|
Bernabucci, U., Biffani, S., Buggiotti, L., Vitali, A., Lacetera, N., & Nardone, A. (2014). The effects of heat stress in Italian Holstein dairy cattle. J. Dairy Sci., 97(1), 471–486.
Abstract: The data set for this study comprised 1,488,474 test-day records for milk, fat, and protein yields and fat and protein percentages from 191,012 first-, second-, and third-parity Holstein cows from 484 farms. Data were collected from 2001 through 2007 and merged with meteorological data from 35 weather stations. A linear model (M1) was used to estimate the effects of the temperature-humidity index (THI) on production traits. Least squares means from M1 were used to detect the THI thresholds for milk production in all parities by using a 2-phase linear regression procedure (M2). A multiple-trait repeatability test-model (M3) was used to estimate variance components for all traits and a dummy regression variable (t) was defined to estimate the production decline caused by heat stress. Additionally, the estimated variance components and M3 were used to estimate traditional and heat-tolerance breeding values (estimated breeding values, EBV) for milk yield and protein percentages at parity 1. An analysis of data (M2) indicated that the daily THI at which milk production started to decline for the 3 parities and traits ranged from 65 to 76. These THI values can be achieved with different temperature/humidity combinations with a range of temperatures from 21 to 36°C and relative humidity values from 5 to 95%. The highest negative effect of THI was observed 4 d before test day over the 3 parities for all traits. The negative effect of THI on production traits indicates that first-parity cows are less sensitive to heat stress than multiparous cows. Over the parities, the general additive genetic variance decreased for protein content and increased for milk yield and fat and protein yield. Additive genetic variance for heat tolerance showed an increase from the first to third parity for milk, protein, and fat yield, and for protein percentage. Genetic correlations between general and heat stress effects were all unfavorable (from -0.24 to -0.56). Three EBV per trait were calculated for each cow and bull (traditional EBV, traditional EBV estimated with the inclusion of THI covariate effect, and heat tolerance EBV) and the rankings of EBV for 283 bulls born after 1985 with at least 50 daughters were compared. When THI was included in the model, the ranking for 17 and 32 bulls changed for milk yield and protein percentage, respectively. The heat tolerance genetic component is not negligible, suggesting that heat tolerance selection should be included in the selection objectives.
Keywords: Animals; Breeding; Cattle; Dietary Fats/analysis; Dietary Proteins/analysis; Female; Genetic Variation; Heat Stress Disorders/*veterinary; *Hot Temperature; Humans; Humidity; *Lactation; Linear Models; Milk/chemistry; Parity; Phenotype; Weather; dairy cow; heritability; production trait; temperature-humidity index breaking point
|
Bertocchi, L., Vitali, A., Lacetera, N., Nardone, A., Varisco, G., & Bernabucci, U. (2014). Seasonal variations in the composition of Holstein cow’s milk and temperature-humidity index relationship. Animal, 8(4), 667–674.
Abstract: A retrospective study on seasonal variations in the characteristics of cow’s milk and temperature-humidity index (THI) relationship was conducted on bulk milk data collected from 2003 to 2009. The THI relationship study was carried out on 508 613 bulk milk data items recorded in 3328 dairy farms form the Lombardy region, Italy. Temperature and relative humidity data from 40 weather stations were used to calculate THI. Milk characteristics data referred to somatic cell count (SCC), total bacterial count (TBC), fat percentage (FA%) and protein percentage (PR%). Annual, seasonal and monthly variations in milk composition were evaluated on 656 064 data items recorded in 3727 dairy farms. The model highlighted a significant association between the year, season and month, and the parameters analysed (SCC, TBC, FA%, PR%). The summer season emerged as the most critical season. Of the summer months, July presented the most critical conditions for TBC, FA% and PR%, (52 054 ± 183 655, 3.73% ± 0.35% and 3.30% ± 0.15%, respectively), and August presented higher values of SCC (369 503 ± 228 377). Each milk record was linked to THI data calculated at the nearest weather station. The analysis demonstrated a positive correlation between THI and SCC and TBC, and indicated a significant change in the slope at 57.3 and 72.8 maximum THI, respectively. The model demonstrated a negative correlation between THI and FA% and PR% and provided breakpoints in the pattern at 50.2 and 65.2 maximum THI, respectively. The results of this study indicate the presence of critical climatic thresholds for bulk tank milk composition in dairy cows. Such indications could facilitate the adoption of heat management strategies, which may ensure the health and production of dairy cows and limit related economic losses.
|