Home | << 1 2 3 4 5 >> |
Andreoli, V., Cassardo, C., Iacona, L. T., & Spanna, F. (2019). Description and Preliminary Simulations with the Italian Vineyard Integrated Numerical Model for Estimating Physiological Values (IVINE). Agronomy, 9(2).
Abstract: The numerical crop growth model Italian Vineyard Integrated Numerical model for Estimating physiological values (IVINE) was developed in order to evaluate environmental forcing effects on vine growth. The IVINE model simulates vine growth processes with parameterizations, allowing the understanding of plant conditions at a vineyard scale. It requires a set of meteorology data and soil water status as boundary conditions. The primary model outputs are main phenological stages, leaf development, yield, and sugar concentration. The model requires setting some variety information depending on the cultivar: At present, IVINE is optimized for Vitis vinifera L. Nebbiolo, a variety grown mostly in the Piedmont region (northwestern Italy). In order to evaluate the model accuracy, IVINE was validated using experimental observations gathered in Piedmontese vineyards, showing performances similar or slightly better than those of other widely used crop models. The results of a sensitivity analysis performed to highlight the effects of the variations of air temperature and soil water potential input variables on IVINE outputs showed that most phenological stages anticipated with increasing temperatures, while berry sugar content saturated at about 25.5 °Bx. Long-term (60 years, in the period 1950–2009) simulations performed over a Piedmontese subregion showed statistically significant variations of most IVINE output variables, with larger time trend slopes referring to the most recent 30-year period (1980–2009), thus confirming that ongoing climate change started influencing Piedmontese vineyards in 1980.
|
Cantelaube, P., & Jayet, P. (2012). Geographical downscaling of outputs provided by an economic farm model calibrated at the regional level. Land Use Policy, 29, 35–44.
Abstract: There is a strong need for accurate and spatially referenced information regarding policy making and model linkage. This need has been expressed by land users, and policy and decision makers in order to estimate both spatially and locally the impacts of European policy (like the Common Agricultural Policy) and/or global changes on farm-groups. These entities are defined according to variables such as altitude, economic size and type of farming (referring to land uses). European farm-groups are provided through the Farm Accountancy Data Network (FADN) as statistical information delivered at regional level. The aim of the study is to map locally farm-group probabilities within each region. The mapping of the farm-groups is done in two steps: (1) by mapping locally the co-variables associated to the farm-groups, i.e. altitude and land uses; (2) by using regional FADN data as a priori knowledge for transforming land uses and altitude information into farm-groups location probabilities within each region. The downscaling process focuses on the land use mapping since land use data are originally point information located every 18 km. Interpolation of land use data is done at 100 m by using co-variables like land cover, altitude, climate and soil data which are continuous layers usually provided at fine resolution. Once the farm-groups are mapped, European Policy and global changes scenarios are run through an agro-economic model for assessing environmental impacts locally.
|
Coucheney, E., Buis, S., Launay, M., Constantin, J., Mary, B., García de Cortázar-Atauri, I., et al. (2015). Accuracy, robustness and behavior of the STICS soil–crop model for plant, water and nitrogen outputs: Evaluation over a wide range of agro-environmental conditions in France. Env. Model. Softw., 64, 177–190.
Abstract: Soil-crop models are increasingly used as predictive tools to assess yield and environmental impacts of agriculture in a growing diversity of contexts. They are however seldom evaluated at a given time over a wide domain of use. We tested here the performances of the STICS model (v8.2.2) with its standard set of parameters over a dataset covering 15 crops and a wide range of agropedoclimatic conditions in France. Model results showed a good overall accuracy, with little bias. Relative RMSE was larger for soil nitrate (49%) than for plant biomass (35%) and nitrogen (33%) and smallest for soil water (10%). Trends induced by contrasted environmental conditions and management practices were well reproduced. Finally, limited dependency of model errors on crops or environments indicated a satisfactory robustness. Such performances make STICS a valuable tool for studying the effects of changes in agro-ecosystems over the domain explored. (C) 2014 Elsevier Ltd. All rights reserved.
|
Dumont, B., Basso, B., Bodson, B., Destain, J. - P., & Destain, M. - F. (2015). Climatic risk assessment to improve nitrogen fertilisation recommendations: A strategic crop model-based approach. European Journal of Agronomy, 65, 10–17.
Abstract: Within the context of nitrogen (N) management, since 1950, with the rapid intensification of agriculture, farmers have often applied much larger fertiliser quantities than what was required to reach the yield potential. However, to prevent pollution of surface and groundwater induced by nitrates, The European Community launched The European Nitrates Directive 91/6/76/EEC. In 2002, in Wallonia (Belgium), the Nitrates Directive has been transposed under the Sustainable Nitrogen Management in Agriculture Program (PGDA), with the aim of maintaining productivity and revenue for the country’s farmers, while reducing the environmental impact of excessive N application. A feasible approach for addressing climatic uncertainty lies in the use of crop models such as the one commonly known as STICS (simulateur multidisciplinaire pour les cultures standard). These models allow the impact on crops of the interaction between cropping systems and climatic records to be assessed. Comprehensive historical climatic records are rare, however, and therefore the yield distribution values obtained using such an approach can be discontinuous. In order to obtain better and more detailed yield distribution information, the use of a high number of stochastically generated climate time series was proposed, relying on the LARS-Weather Generator. The study focused on the interactions between varying N practices and climatic conditions. Historically and currently, Belgian farmers apply 180 kg N ha(-1), split into three equal fractions applied at the tillering, stem elongation and flag-leaf stages. This study analysed the effectiveness of this treatment in detail, comparing it to similar practices where only the N rates applied at the flag-leaf stage were modified. Three types of farmer decision-making were analysed. The first related to the choice of N strategy for maximising yield, the second to obtaining the highest net revenue, and the third to reduce the environmental impact of potential N leaching, which carries the likelihood of taxation if inappropriate N rates are applied. The results showed reduced discontinuity in the yield distribution values thus obtained. In general, the modulation of N levels to accord with current farmer practices showed considerable asymmetry. In other words, these practices maximised the probability of achieving yields that were at least superior to the mean of the distribution values, thus reducing risk for the farmers. The practice based on applying the highest amounts (60-60-100 kg N ha(-1)) produced the best yield distribution results. When simple economical criteria were computed, the 60-60-80 kg N ha(-1) protocol was found to be optimal for 80-90% of the time. There were no statistical differences, however, between this practice and Belgian farmers’ current practice. When the taxation linked to a high level of potentially leachable N remaining in the soil after harvest was considered, this methodology clearly showed that, in 3 years out of 4,30 kg N ha(-1) could systematically be saved in comparison with the usual practice.
|
Dumont, B., Basso, B., Bodson, B., Destain, J. - P., & Destain, M. - F. (2016). Assessing and modeling economic and environmental impact of wheat nitrogen management in Belgium. Env. Model. Softw., 79, 184–196.
Abstract: Future progress in wheat yield will rely on identifying genotypes & management practices better adapted to the fluctuating environment Nitrogen (N) fertilization is probably the most important practice impacting crop growth. However, the adverse environmental impacts of inappropriate N management (e.g., lixiviation) must be considered in the decision-making process. A formal decisional algorithm was developed to tactically optimize the economic & environmental N fertilization in wheat. Climatic uncertainty analysis was performed using stochastic weather time-series (LARS-WG). Crop growth was simulated using STICS model. Experiments were conducted to support the algorithm recommendations: winter wheat was sown between 2008 & 2014 in a classic loamy soil of the Hesbaye Region, Belgium (temperate climate). Results indicated that, most of the time, the third N fertilization applied at flag-leaf stage by farmers could be reduced. Environmental decision criterion is most of the time the limiting factor in comparison to the revenues expected by farmers. (C) 2016 Elsevier Ltd. All rights reserved.
|