Home | << 1 2 3 4 5 6 7 8 9 10 >> [11–17] |
Martre, P., He, J., Le Gouis, J., & Semenov, M. A. (2015). In silico system analysis of physiological traits determining grain yield and protein concentration for wheat as influenced by climate and crop management. J. Experim. Bot., 66(12), 3581–3598.
Abstract: Genetic improvement of grain yield (GY) and grain protein concentration (GPC) is impeded by large genotype×environment×management interactions and by compensatory effects between traits. Here global uncertainty and sensitivity analyses of the process-based wheat model SiriusQuality2 were conducted with the aim of identifying candidate traits to increase GY and GPC. Three contrasted European sites were selected and simulations were performed using long-term weather data and two nitrogen (N) treatments in order to quantify the effect of parameter uncertainty on GY and GPC under variable environments. The overall influence of all 75 plant parameters of SiriusQuality2 was first analysed using the Morris method. Forty-one influential parameters were identified and their individual (first-order) and total effects on the model outputs were investigated using the extended Fourier amplitude sensitivity test. The overall effect of the parameters was dominated by their interactions with other parameters. Under high N supply, a few influential parameters with respect to GY were identified (e.g. radiation use efficiency, potential duration of grain filling, and phyllochron). However, under low N, >10 parameters showed similar effects on GY and GPC. All parameters had opposite effects on GY and GPC, but leaf and stem N storage capacity appeared as good candidate traits to change the intercept of the negative relationship between GY and GPC. This study provides a system analysis of traits determining GY and GPC under variable environments and delivers valuable information to prioritize model development and experimental work.
Keywords: Climate; *Computer Simulation; Crops, Agricultural/*growth & development/physiology; Edible Grain/*growth & development; Models, Biological; Nitrogen/metabolism; Plant Proteins/*metabolism; Plant Transpiration; Probability; *Quantitative Trait, Heritable; Soil/chemistry; Triticum/growth & development/metabolism/*physiology; Water/chemistry; Crop growth model; genetic adaptation; grain protein concentration; grain yield; interannual variability; sensitivity analysis; wheat (Triticum aestivum L.); yield stability
|
Molina-Herrera, S., Haas, E., Grote, R., Kiese, R., Klatt, S., Kraus, D., et al. (2017). Importance of soil NO emissions for the total atmospheric NOX budget of Saxony, Germany. Atm. Environ., 152, 61–76.
Abstract: Soils are a significant source for the secondary greenhouse gas NO and assumed to be a significant source of tropospheric NOx in rural areas. Here we tested the LandscapeDNDC model for its capability to simulate magnitudes and dynamics of soil NO emissions for 22 sites differing in land use (arable, grassland and forest) and edaphic as well as climatic conditions. Overall, LandscapeDNDC simulated mean soil NO emissions agreed well with observations (r(2) = 0.82). However, simulated day to day variations of NO did only agree weakly with high temporal resolution measurements, though agreement between simulations and measurements significantly increased if data were aggregated to weekly, monthly and seasonal time scales. The model reproduced NO emissions from high and low emitting sites, and responded to fertilization (mineral and organic) events with pulse emissions. After evaluation, we linked the LandscapeDNDC model to a GIS database holding spatially explicit data on climate, land use, soil and management to quantify the contribution of soil biogenic NO emissions to the total NOx budget for the State of Saxony, Germany. Our calculations show that soils of both agricultural and forest systems are significant sources and contribute to about 8% (uncertainty range: 6 -13%) to the total annual tropospheric NO, budget for Saxony. However, the contributions of soil NO emission to total tropospheric NO, showed a high spatial variability and in some rural regions such as the Ore Mts., simulated soil NO emissions were by far more important than anthropogenic sources. (C) 2016 Elsevier Ltd. All rights reserved.
|
Moraru, P. I., Rusu, T., Guș, P., Bogdan, I., & Pop, A. I. (2015). The role of minimum tillage in protecting environmental resources of the Transylvanian Plain, Romania. Romanian Agricultural Research, 32, 127–135.
Abstract: Conservative tillage systems tested in the hilly area of the Transylvanian Plain (Romania), confirms the possibility of improving the biological, physical, chemical and technologizcal properties of the soil. Conservative components include minimum tillage systems and surface incorporation of crop residues. The minimum tillage soil systems with paraplow, chisel or rotary harrow are polyvalent alternatives for basic preparation, germination bed preparation and sowing, for fields and crops with moderate loose requirements being optimized technologies for: soil natural fertility activation and rationalization, reduction of erosion, increasing the accumulation capacity for water and realization of sowing in the optimal period. The minimum tillage systems ensure an adequate aerial-hydrical regime for the biological activity intensity and for the nutrients solubility equilibrium. The vegetal material remaining at the soil surface or superficially incorporated has its contribution to intensifying the biological activity, being an important resource of organic matter. Humus content increases by 0.41%. The minimum tillage systems rebuild the soil structure (hydrostable macroagregate content increases up to 2.2% to 5.2%), improving the global drainage of soil which allows a rapid infiltration of water in soil. Water reserve, accumulated in the 0-50 cm depth is with 1-32 m(3) ha(-1) higher in the minimum tillage variants. The result is a more productive soil, better protected against wind and water erosion and needing less fuel for preparing the germination bed.
Keywords: minimum tillage; soil conservation; crop production; winter-wheat; systems; maize; conservation; temperature; yield; l.
|
Moriondo, M., Ferrise, R., Trombi, G., Brilli, L., Dibari, C., & Bindi, M. (2015). Modelling olive trees and grapevines in a changing climate. Env. Model. Softw., 72, 387–401.
Abstract: The models developed for simulating olive tree and grapevine yields were reviewed by focussing on the major limitations of these models for their application in a changing climate. Empirical models, which exploit the statistical relationship between climate and yield, and process based models, where crop behaviour is defined by a range of relationships describing the main plant processes, were considered. The results highlighted that the application of empirical models to future climatic conditions (i.e. future climate scenarios) is unreliable since important statistical approaches and predictors are still lacking. While process-based models have the potential for application in climate-change impact assessments, our analysis demonstrated how the simulation of many processes affected by warmer and CO2-enriched conditions may give rise to important biases. Conversely, some crop model improvements could be applied at this stage since specific sub-models accounting for the effect of elevated temperatures and CO2 concentration were already developed. (C) 2014 Elsevier Ltd. All rights reserved.
|
Mueller, L., Schindler, U., Shepherd, T. G., Ball, B. C., Smolentseva, E., Hu, C., et al. (2012). A framework for assessing agricultural soil quality on a global scale. Archives of Agronomy and Soil Science, 58(sup1), S76–S82.
Abstract: This paper provides information about a novel approach of rating agricultural soil quality (SQ) and crop yield potentials consistently over a range of spatial scales. The Muencheberg Soil Quality Rating is an indicator-based straightforward overall assessment method of agricultural SQ. It is a framework covering aspects of soil texture, structure, topography and climate which is based on 8 basic indicators and more than 12 hazard indicators. Ratings are performed by visual methods of soil evaluation. A field manual is then used to provide ratings from tables based on indicator thresholds. Finally, overall rating scores are given, ranging from 0 (worst) to 100 (best) to characterise crop yield potentials. The current approach is valid for grassland and cropland. Field tests in several countries confirmed the practicability and reliability of the method. At field scale, soil structure is a crucial, management induced criterion of agricultural SQ. At the global scale, climate controlled hazard indicators of drought risk and soil thermal regime are crucial for SQ and crop yield potentials. Final rating scores are well correlated with crop yields. We conclude that this system could be evolved for ranking and controlling agricultural SQ on a global scale.
Keywords: soil quality; indicators; muencheberg soil quality rating
|