Dumont, B., Basso, B., Bodson, B., Destain, J. - P., & Destain, M. - F. (2016). Assessing and modeling economic and environmental impact of wheat nitrogen management in Belgium. Env. Model. Softw., 79, 184–196.
Abstract: Future progress in wheat yield will rely on identifying genotypes & management practices better adapted to the fluctuating environment Nitrogen (N) fertilization is probably the most important practice impacting crop growth. However, the adverse environmental impacts of inappropriate N management (e.g., lixiviation) must be considered in the decision-making process. A formal decisional algorithm was developed to tactically optimize the economic & environmental N fertilization in wheat. Climatic uncertainty analysis was performed using stochastic weather time-series (LARS-WG). Crop growth was simulated using STICS model. Experiments were conducted to support the algorithm recommendations: winter wheat was sown between 2008 & 2014 in a classic loamy soil of the Hesbaye Region, Belgium (temperate climate). Results indicated that, most of the time, the third N fertilization applied at flag-leaf stage by farmers could be reduced. Environmental decision criterion is most of the time the limiting factor in comparison to the revenues expected by farmers. (C) 2016 Elsevier Ltd. All rights reserved.
|
Dumont, B., Basso, B., Leemans, V., Bodson, B., Destain, J. - P., & Destain, M. - F. (2015). Systematic analysis of site-specific yield distributions resulting from nitrogen management and climatic variability interactions. Precision Agric., 16(4), 361–384.
Abstract: At the plot level, crop simulation models such as STICS have the potential to evaluate risk associated with management practices. In nitrogen (N) management, however, the decision-making process is complex because the decision has to be taken without any knowledge of future weather conditions. The objective of this paper is to present a general methodology for assessing yield variability linked to climatic uncertainty and variable N rate strategies. The STICS model was coupled with the LARS-Weather Generator. The Pearson system and coefficients were used to characterise the shape of yield distribution. Alternatives to classical statistical tests were proposed for assessing the normality of distributions and conducting comparisons (namely, the Jarque-Bera and Wilcoxon tests, respectively). Finally, the focus was put on the probability risk assessment, which remains a key point within the decision process. The simulation results showed that, based on current N application practice among Belgian farmers (60-60-60 kgN ha(-1)), yield distribution was very highly significantly non-normal, with the highest degree of asymmetry characterised by a skewness value of -1.02. They showed that this strategy gave the greatest probability (60 %) of achieving yields that were superior to the mean (10.5 t ha(-1)) of the distribution.
|
Dumont, B., Vancutsem, F., Seutin, B., Bodson, B., Destain, J. - P., & Destain, M. - F. (2012). Simulation de la croissance du blé à l’aide de modèles écophysiologiques: Synthèse bibliographique des méthodes, potentialités et limitations. Biotechnologie, Agronomie, Société et Environnement, 163, 376–386.
Abstract: Crop models describe the growth and development of a crop interacting with its surrounding agro-environmental conditions (soil, climate and the close conditions of the plant). However, the implementation of such models remains difficult because of the high number of explanatory variables and parameters. It often happens that important discrepancies appear between measured and simulated values. This article aims to highlight the different sources of uncertainty related to the use of crop models, as well as the actual methods that allow a compensation for or, at least, a consideration of these sources of error during analysis of the model results. This article presents a literature review, which firstly synthesises the general mathematical structure of crop models. The main criteria for evaluating crop models are then described. Finally, several methods used for improving models are given. Parameter estimation methods, including frequentist and Bayesian approaches, are presented and data assimilation methods are reviewed.
|
Eitzinger, J., Thaler, S., Schmid, E., Strauss, F., Ferrise, R., Moriondo, M., et al. (2013). Sensitivities of crop models to extreme weather conditions during flowering period demonstrated for maize and winter wheat in Austria. J. Agric. Sci., 151(6), 813–835.
Abstract: The objective of the present study was to compare the performance of seven different, widely applied crop models in predicting heat and drought stress effects. The study was part of a recent suite of model inter-comparisons initiated at European level and constitutes a component that has been lacking in the analysis of sources of uncertainties in crop models used to study the impacts of climate change. There was a specific focus on the sensitivity of models for winter wheat and maize to extreme weather conditions (heat and drought) during the short but critical period of 2 weeks after the start of flowering. Two locations in Austria, representing different agro-climatic zones and soil conditions, were included in the simulations over 2 years, 2003 and 2004, exhibiting contrasting weather conditions. In addition, soil management was modified at both sites by following either ploughing or minimum tillage. Since no comprehensive field experimental data sets were available, a relative comparison of simulated grain yields and soil moisture contents under defined weather scenarios with modified temperatures and precipitation was performed for a 2-week period after flowering. The results may help to reduce the uncertainty of simulated crop yields to extreme weather conditions through better understanding of the models’ behaviour. Although the crop models considered (DSSAT, EPIC, WOFOST, AQUACROP, FASSET, HERMES and CROPSYST) mostly showed similar trends in simulated grain yields for the different weather scenarios, it was obvious that heat and drought stress caused by changes in temperature and/or precipitation for a short period of 2 weeks resulted in different grain yields simulated by different models. The present study also revealed that the models responded differently to changes in soil tillage practices, which affected soil water storage capacity.
|
Elsgaard, L., Børgesen, C. D., Olesen, J. E., Siebert, S., Ewert, F., Peltonen-Sainio, P., et al. (2012). Shifts in comparative advantages for maize, oat and wheat cropping under climate change in Europe. Food Addit. Contam. Part A, 29(10), 1514–1526.
Abstract: Climate change is anticipated to affect European agriculture, including the risk of emerging or re-emerging feed and food hazards. Indirectly, climate change may influence such hazards (e.g. the occurrence of mycotoxins) due to geographic shifts in the distribution of major cereal cropping systems and the consequences this may have for crop rotations. This paper analyses the impact of climate on cropping shares of maize, oat and wheat on a 50-km square grid across Europe (45-65°N) and provides model-based estimates of the changes in cropping shares in response to changes in temperature and precipitation as projected for the time period around 2040 by two regional climate models (RCM) with a moderate and a strong climate change signal, respectively. The projected cropping shares are based on the output from the two RCMs and on algorithms derived for the relation between meteorological data and observed cropping shares of maize, oat and wheat. The observed cropping shares show a south-to-north gradient, where maize had its maximum at 45-55°N, oat had its maximum at 55-65°N, and wheat was more evenly distributed along the latitudes in Europe. Under the projected climate changes, there was a general increase in maize cropping shares, whereas for oat no areas showed distinct increases. For wheat, the projected changes indicated a tendency towards higher cropping shares in the northern parts and lower cropping shares in the southern parts of the study area. The present modelling approach represents a simplification of factors determining the distribution of cereal crops, and also some uncertainties in the data basis were apparent. A promising way of future model improvement could be through a systematic analysis and inclusion of other variables, such as key soil properties and socio-economic conditions, influencing the comparative advantages of specific crops.
|