Baranowski, P., Krzyszczak, J., Slawinski, C., Hoffmann, H., Kozyra, J., Nieróbca, A., et al. (2015). Multifractal analysis of meteorological time series to assess climate impacts. Clim. Res., 65, 39–52.
Abstract: Agro-meteorological quantities are often in the form of time series, and knowledge about their temporal scaling properties is fundamental for transferring locally measured fluctuations to larger scales and vice versa. However, the scaling analysis of these quantities is complicated due to the presence of localized trends and nonstationarities. The objective of this study was to characterise scaling properties (i.e. statistical self-similarity) of the chosen agro-meteorological quantities through multifractal detrended fluctuation analysis (MFDFA). For this purpose, MFDFA was performedwith 11 322 measured time series (31 yr) of daily air temperature, wind velocity, relative air humidity, global radiation and precipitation from stations located in Finland, Germany, Poland and Spain. The empirical singularity spectra indicated their multifractal structure. The richness of the studied multifractals was evaluated by the width of their spectrum, indicating considerable differences in dynamics and development. In log-log plots of the cumulative distributions of all meteorological parameters the linear functions prevailed for high values of the response, indicating that these distributions were consistent with power-law asymptotic behaviour. Additionally, we investigated the type of multifractality that underlies the q-dependence of the generalized Hurst exponent by analysing the corresponding shuffled and surrogate time series. For most of the studied meteorological parameters, the multifractality is due to different long-range correlations for small and large fluctuations. Only for precipitation does the multifractality result mainly from broad probability function. This feature may be especially valuable for assessing the effect of change in climate dynamics.
|
Dono, G., Cortignani, R., Doro, L., Giraldo, L., Ledda, L., Pasqui, M., et al. (2013). An integrated assessment of the impacts of changing climate variability on agricultural productivity and profitability in an irrigated Mediterranean catchment. Water Resource Manage., 27(10), 3607–3622.
Abstract: Climate change is likely to have a profound effect on many agricultural variables, although the extent of its influence will vary over the course of the annual farm management cycle. Consequently, the effect of different and interconnected physical, technical and economic factors must be modeled in order to estimate the effects of climate change on agricultural productivity. Such modeling commonly makes use of indicators that summarize the among environmental factors that are considered when farmers plan their activities. This study uses net evapotranspiration (ETN), estimated using EPIC, as a proxy index for the physical factors considered by farmers when managing irrigation. Recent trends suggest that the probability distribution function of ETN may continue to change in the near future due to changes in the irrigation needs of crops. Also, water availability may continue to vary due to changes in the rainfall regime. The impacts of the uncertainties related to these changes on costs are evaluated using a Discrete Stochastic Programming model representing an irrigable Mediterranean area where limited water is supplied from a reservoir. In this context, adaptation to climate change can be best supported by improvements to the collective irrigation systems, rather than by measures aimed at individual farms such as those contained within the rural development policy.
|
Murat, M., Malinowska, I., Gos, M., & Krzyszczak, J. (2018). Forecasting daily meteorological time series using ARIMA and regression models. Int. Agrophys., 32(2), 253–264.
Abstract: The daily air temperature and precipitation time series recorded between January 1, 1980 and December 31, 2010 in four European sites (Jokioinen, Dikopshof, Lleida and Lublin) from different climatic zones were modeled and forecasted. In our forecasting we used the methods of the Box-Jenkins and Holt-Winters seasonal auto regressive integrated moving-average, the autoregressive integrated moving-average with external regressors in the form of Fourier terms and the time series regression, including trend and seasonality components methodology with R software. It was demonstrated that obtained models are able to capture the dynamics of the time series data and to produce sensible forecasts.
|
Murat, M., Malinowska, I., Hoffmann, H., & Baranowski, P. (2016). Statistical modelling of agrometeorological time series by exponential smoothing. International Agrophysics, 30(1), 57–65.
Abstract: Meteorological time series are used in modelling agrophysical processes of the soil-plant-atmosphere system which determine plant growth and yield. Additionally, longterm meteorological series are used in climate change scenarios. Such studies often require forecasting or projection of meteorological variables, eg the projection of occurrence of the extreme events. The aim of the article was to determine the most suitable exponential smoothing models to generate forecast using data on air temperature, wind speed, and precipitation time series in Jokioinen (Finland), Dikopshof (Germany), Lleida (Spain), and Lublin (Poland). These series exhibit regular additive seasonality or non-seasonality without any trend, which is confirmed by their autocorrelation functions and partial autocorrelation functions. The most suitable models were indicated by the smallest mean absolute error and the smallest root mean squared error.
|