Home | << 1 2 3 4 5 >> |
Montesino-San Martín, M., Olesen, J. E., & Porter, J. R. (2015). Can crop-climate models be accurate and precise? A case study for wheat production in Denmark. Agricultural and Forest Meteorology, 202, 51–60.
Abstract: Crop models, used to make projections of climate change impacts, differ greatly in structural detail. Complexity of model structure has generic effects on uncertainty and error propagation in climate change impact assessments. We applied Bayesian calibration to three distinctly different empirical and mechanistic wheat models to assess how differences in the extent of process understanding in models affects uncertainties in projected impact. Predictive power of the models was tested via both accuracy (bias) and precision (or tightness of grouping) of yield projections for extrapolated weather conditions. Yields predicted by the mechanistic model were generally more accurate than the empirical models for extrapolated conditions. This trend does not hold for all extrapolations; mechanistic and empirical models responded differently due to their sensitivities to distinct weather features. However, higher accuracy comes at the cost of precision of the mechanistic model to embrace all observations within given boundaries. The approaches showed complementarity in sensitivity to weather variables and in accuracy for different extrapolation domains. Their differences in model precision and accuracy make them suitable for generic model ensembles for near-term agricultural impact assessments of climate change.
|
Park, S. K., Sungmin, O., & Cassardo, C. (2017). Soil temperature response in Korea to a changing climate using a land surface model. Asia-Pacific Journal of Atmospheric Sciences, 53(4), 457–470.
Abstract: The land surface processes play an important role in weather and climate systems through its regulation of radiation, heat, water and momentum fluxes. Soil temperature (ST) is one of the most important parameters in the land surface processes; however, there are few extensive measurements of ST with a long time series in the world. According to the CLImatology of Parameters at the Surface (CLIPS) methodology, the output of a trusted Soil-Vegetation- Atmosphere Transfer (SVAT) scheme can be utilized instead of observations to investigate the regional climate of interest. In this study, ST in South Korea is estimated in a view of future climate using the output from a trusted SVAT scheme – the University of TOrino model of land Process Interaction with Atmosphere (UTOPIA), which is driven by a regional climate model. Here characteristic changes in ST are analyzed under the IPCC A2 future climate for 2046-2055 and 2091-2100, and are compared with those under the reference climate for 1996-2005. The UTOPIA results were validated using the observed ST in the reference climate, and the model proved to produce reasonable ST in South Korea. The UTOPIA simulations indicate that ST increases due to environmental change, especially in air temperature (AT), in the future climate. The increment of ST is proportional to that of AT except for winter. In wintertime, the ST variations are different from region to region mainly due to variations in snow cover, which keeps ST from significant changes by the climate change.
Keywords: Land surface process; soil temperature; climate change; soil-vegetation-atmosphere transfer (SVAT) scheme; University of TOrino model of land Process Interaction with Atmosphere (UTOPIA); REGIONAL CLIMATE; SNOW COVER; WATER-RESOURCES; SOCIOECONOMIC SCENARIOS; QUANTITATIVE-ANALYSIS; MESOSCALE MODEL; SRES EMISSIONS; FUTURE CLIMATE; CHANGE IMPACTS; SOUTH-AMERICA
|
Perego, A., Giussani, A., Sanna, M., Fumagalli, M., Carozzi, M., Alfieri, L., et al. (2013). The ARMOSA simulation crop model: overall features, calibration and validation results. Italian Journal of Agrometeorology, 3, 23–38.
Abstract: ARMOSA is a dynamic simulation model which was developed to simulate crop growth and development, water and nitrogen dynamics under different pedoclimatic conditions and cropping systems in the arable land. The model is meant to be a tool for the evaluation of the impact of different crop management practices on soil nitrogen and carbon cycles and groundwater nitrate pollution. A large data set collected over three to six years from six monitoring sites in Lombardia plain was used to calibrate and validate the model parameters. Measured meteorological data, soil chemical and physical characterizations, crop-related data of different cropping systems allowed for a proper parameterization. Fit indexes showed the reliability of the model in adequately predicting crop-related variables, such as above ground biomass (RRMSE=11.18, EF=0.94, r=0.97), Leaf Area Index maximum value (RRMSE=8.24, EF=0.37, r=0.72), harvest index (RRMSE=19.4, EF=0.32, r=0.74), and crop N uptake (RRMSE=20.25, EF=0.69, r=0.85). Using two different one-year data set from each monitoring site, the model was calibrated and validated, getting to encouraging results: RRMSE=6.28, EF=0.52, r=0.68 for soil water content at different depths, and RRMSE=34.89, EF=0.59, r=0.75 for soil NO3-N content along soil profile. The simulated N leaching was in full agreement with measured data (RRMSE=26.62, EF=0.88, r=0.98).
|
Persson, T., Kværnø, S., & Höglind, M. (2015). Impact of soil type extrapolation on timothy grass yield under baseline and future climate conditions in southeastern Norway. Clim. Res., 65, 71–86.
Abstract: Interactions between soil properties and climate affect forage grass productivity. Dynamic models, simulating crop performance as a function of environmental conditions, are valid for a specific location with given soil and weather conditions. Extrapolations of local soil properties to larger regions can help assess the requirement for soil input in regional yield estimations. Using the LINGRA model, we simulated the regional yield level and variability of timothy, a forage grass, in Akershus and Ostfold counties, Norway. Soils were grouped according to physical similarities according to 4 sets of criteria. This resulted in 66, 15, 5 and 1 groups of soils. The properties of the soil with the largest area was extrapolated to the other soils within each group and input to the simulations. All analyses were conducted for 100 yr of generated weather representing the period 1961-1990, and climate projections for the period 2046-2065, the Intergovernmental Panel on Climate Change greenhouse gas emission scenario A1B, and 4 global climate models. The simulated regional seasonal timothy yields were 5-13% lower on average and had higher inter-annual variability for the least detailed soil extrapolation than for the other soil extrapolations, across climates. There were up to 20% spatial intra-regional differences in simulated yield between soil extrapolations. The results indicate that, for conditions similar to these studied here, a few representative profiles are sufficient for simulations of average regional seasonal timothy yield. More spatially detailed yield analyses would benefit from more detailed soil input.
|
Rötter, R. P., Höhn, J. G., & Fronzek, S. (2012). Projections of climate change impacts on crop production – a global and a Nordic perspective. Acta Agriculturae Scandinavica, Section A – Animal Science, 62, 166–180.
Abstract: Global climate is changing and food production is very sensitive to weather and climate variations. Global assessments of climate change impacts on food production have been made since the early 1990s, initially with little attention to the uncertainties involved. Although there has been abundant analysis of uncertainties in future greenhouse gas emissions and their impacts on the climate system, uncertainties related to the way climate change projections are scaled down as appropriate for different analyses and in modelling crop responses to climate change, have been neglected. This review paper mainly addresses uncertainties in crop impact modelling and possibilities to reduce them. We specifically aim to (i) show ranges of projected climate change-induced impacts on crop yields, (ii) give recommendations on use of emission scenarios, climate models, regionalization and ensemble crop model simulations for different purposes and (iii) discuss improvements and a few known unknowns’ affecting crop impact projections.
|