Home | << 1 2 >> |
Asseng, S., Ewert, F., Rosenzweig, C., Jones, J. W., Hatfield, J. L., Ruane, A. C., et al. (2013). Uncertainty in simulating wheat yields under climate change. Nat. Clim. Change, 3(9), 827–832.
Abstract: Projections of climate change impacts on crop yields are inherently uncertain(1). Uncertainty is often quantified when projecting future greenhouse gas emissions and their influence on climate(2). However, multi-model uncertainty analysis of crop responses to climate change is rare because systematic and objective comparisons among process-based crop simulation models(1,3) are difficult(4). Here we present the largest standardized model intercomparison for climate change impacts so far. We found that individual crop models are able to simulate measured wheat grain yields accurately under a range of environments, particularly if the input information is sufficient. However, simulated climate change impacts vary across models owing to differences in model structures and parameter values. A greater proportion of the uncertainty in climate change impact projections was due to variations among crop models than to variations among downscaled general circulation models. Uncertainties in simulated impacts increased with CO2 concentrations and associated warming. These impact uncertainties can be reduced by improving temperature and CO2 relationships in models and better quantified through use of multi-model ensembles. Less uncertainty in describing how climate change may affect agricultural productivity will aid adaptation strategy development and policymaking.
Keywords: crop production; models; food; co2; temperature; projections; adaptation; scenarios; ensemble; impacts
|
Montesino-San Martín, M., Olesen, J. E., & Porter, J. R. (2015). Can crop-climate models be accurate and precise? A case study for wheat production in Denmark. Agricultural and Forest Meteorology, 202, 51–60.
Abstract: Crop models, used to make projections of climate change impacts, differ greatly in structural detail. Complexity of model structure has generic effects on uncertainty and error propagation in climate change impact assessments. We applied Bayesian calibration to three distinctly different empirical and mechanistic wheat models to assess how differences in the extent of process understanding in models affects uncertainties in projected impact. Predictive power of the models was tested via both accuracy (bias) and precision (or tightness of grouping) of yield projections for extrapolated weather conditions. Yields predicted by the mechanistic model were generally more accurate than the empirical models for extrapolated conditions. This trend does not hold for all extrapolations; mechanistic and empirical models responded differently due to their sensitivities to distinct weather features. However, higher accuracy comes at the cost of precision of the mechanistic model to embrace all observations within given boundaries. The approaches showed complementarity in sensitivity to weather variables and in accuracy for different extrapolation domains. Their differences in model precision and accuracy make them suitable for generic model ensembles for near-term agricultural impact assessments of climate change.
|
Pirttioja, N., Carter, T. R., Fronzek, S., Bindi, M., Hoffmann, H., Palosuo, T., et al. (2015). Temperature and precipitation effects on wheat yield across a European transect: a crop model ensemble analysis using impact response surfaces. Clim. Res., 65, 87–105.
Abstract: This study explored the utility of the impact response surface (IRS) approach for investigating model ensemble crop yield responses under a large range of changes in climate. IRSs of spring and winter wheat Triticum aestivum yields were constructed from a 26-member ensemble of process-based crop simulation models for sites in Finland, Germany and Spain across a latitudinal transect. The sensitivity of modelled yield to systematic increments of changes in temperature (-2 to +9°C) and precipitation (-50 to +50%) was tested by modifying values of baseline (1981 to 2010) daily weather, with CO2 concentration fixed at 360 ppm. The IRS approach offers an effective method of portraying model behaviour under changing climate as well as advantages for analysing, comparing and presenting results from multi-model ensemble simulations. Though individual model behaviour occasionally departed markedly from the average, ensemble median responses across sites and crop varieties indicated that yields decline with higher temperatures and decreased precipitation and increase with higher precipitation. Across the uncertainty ranges defined for the IRSs, yields were more sensitive to temperature than precipitation changes at the Finnish site while sensitivities were mixed at the German and Spanish sites. Precipitation effects diminished under higher temperature changes. While the bivariate and multi-model characteristics of the analysis impose some limits to interpretation, the IRS approach nonetheless provides additional insights into sensitivities to inter-model and inter-annual variability. Taken together, these sensitivities may help to pinpoint processes such as heat stress, vernalisation or drought effects requiring refinement in future model development.
|
Rodriguez, A., Ruiz-Ramos, M., Palosuo, T., Carter, T. R., Fronzek, S., Lorite, I. J., et al. (2019). Implications of crop model ensemble size and composition for estimates of adaptation effects and agreement of recommendations. Agricultural and Forest Meteorology, 264, 351–362.
Abstract: unless local adaptation can ameliorate these impacts. Ensembles of crop simulation models can be useful tools for assessing if proposed adaptation options are capable of achieving target yields, whilst also quantifying the share of uncertainty in the simulated crop impact resulting from the crop models themselves. Although some studies have analysed the influence of ensemble size on model outcomes, the effect of ensemble composition has not yet been properly appraised. Moreover, results and derived recommendations typically rely on averaged ensemble simulation results without accounting sufficiently for the spread of model outcomes. Therefore, we developed an Ensemble Outcome Agreement (EOA) index, which analyses the effect of changes in composition and size of a multi-model ensemble (MME) to evaluate the level of agreement between MME outcomes with respect to a given hypothesis (e.g. that adaptation measures result in positive crop responses). We analysed the recommendations of a previous study performed with an ensemble of 17 crop models and testing 54 adaptation options for rainfed winter wheat (Triticum aestivwn L.) at Lleida (NE Spain) under perturbed conditions of temperature, precipitation and atmospheric CO2 concentration. Our results confirmed that most adaptations recommended in the previous study have a positive effect. However, we also showed that some options did not remain recommendable in specific conditions if different ensembles were considered. Using EOA, we were able to identify the adaptation options for which there is high confidence in their effectiveness at enhancing yields, even under severe climate perturbations. These include substituting spring wheat for winter wheat combined with earlier sowing dates and standard or longer duration cultivars, or introducing supplementary irrigation, the latter increasing EOA values in all cases. There is low confidence in recovering yields to baseline levels, although this target could be attained for some adaptation options under moderate climate perturbations. Recommendations derived from such robust results may provide crucial information for stakeholders seeking to implement adaptation measures.
|
Schönhart, M., Mitter, H., Schmid, E., Heinrich, G., & Gobiet, A. (2014). Integrated analysis of climate change impacts and adaptation measures in Austrian agriculture. German Journal of Agricultural Economics, 63(3), 156–176.
Abstract: An integrated modelling framework (IMF) has been developed and applied to analyse climate change impacts and the effectiveness of adaptation measures in Austrian agriculture. The IMF couples the crop rotation model CropRota, the bio-physical process model EPIC and the bottom-up economic land use model PASMA at regional level (NUTS-3) considering agri-environmental indicators. Four contrasting regional climate model (RCM) simulations represent climate change until 2050. The RCM simulations are applied to a baseline and three adaptation and policy scenarios. Climate change increases crop productivity on national average in the IMF. Changes in average gross margins at national level range from 0% to + 5% between the baseline and the three adaptation and policy scenarios. The impacts at NUTS-3 level range from -5% to + 7% between the baseline and the three adaptation and policy scenarios. Adaptation measures such as planting of winter cover crops, reduced tillage and irrigation are effective in reducing yield losses, increasing revenues, or in improving environmental states under climate change. Future research should account for extreme weather events in order to analyse whether average productivity gains at the aggregated level suffice to cover costs from expected higher climate variability.
|