Home | << 1 2 3 4 5 6 7 8 9 10 >> [11–20] |
Andreoli, V., Cassardo, C., Iacona, L. T., & Spanna, F. (2019). Description and Preliminary Simulations with the Italian Vineyard Integrated Numerical Model for Estimating Physiological Values (IVINE). Agronomy, 9(2).
Abstract: The numerical crop growth model Italian Vineyard Integrated Numerical model for Estimating physiological values (IVINE) was developed in order to evaluate environmental forcing effects on vine growth. The IVINE model simulates vine growth processes with parameterizations, allowing the understanding of plant conditions at a vineyard scale. It requires a set of meteorology data and soil water status as boundary conditions. The primary model outputs are main phenological stages, leaf development, yield, and sugar concentration. The model requires setting some variety information depending on the cultivar: At present, IVINE is optimized for Vitis vinifera L. Nebbiolo, a variety grown mostly in the Piedmont region (northwestern Italy). In order to evaluate the model accuracy, IVINE was validated using experimental observations gathered in Piedmontese vineyards, showing performances similar or slightly better than those of other widely used crop models. The results of a sensitivity analysis performed to highlight the effects of the variations of air temperature and soil water potential input variables on IVINE outputs showed that most phenological stages anticipated with increasing temperatures, while berry sugar content saturated at about 25.5 °Bx. Long-term (60 years, in the period 1950–2009) simulations performed over a Piedmontese subregion showed statistically significant variations of most IVINE output variables, with larger time trend slopes referring to the most recent 30-year period (1980–2009), thus confirming that ongoing climate change started influencing Piedmontese vineyards in 1980.
|
Angulo, C., Gaiser, T., Rötter, R. P., Børgesen, C. D., Hlavinka, P., Trnka, M., et al. (2014). ‘Fingerprints’ of four crop models as affected by soil input data aggregation. European Journal of Agronomy, 61, 35–48.
Abstract: • Systematic analysis of the influence of spatial soil data resolution on simulated regional yields and total growing season evapotranspiration. • The responses of four crop models of different complexity are compared. • Differences between models are larger than the effect of the chosen spatial soil data resolution. • Low influence of soil data resolution due to: high precipitation amount, methods for calculating water retention and method of data aggregation. The spatial variability of soil properties is an important driver of yield variability at both field and regional scale. Thus, when using crop growth simulation models, the choice of spatial resolution of soil input data might be key in order to accurately reproduce observed yield variability. In this study we used four crop models (SIMPLACE<LINTUL-SLIM>, DSSAT-CSM, EPIC and DAISY) differing in the detail of modeling above-ground biomass and yield as well as of modeling soil water dynamics, water uptake and drought effects on plants to simulate winter wheat in two (agro-climatologically and geo-morphologically) contrasting regions of the federal state of North-Rhine-Westphalia (Germany) for the period from 1995 to 2008. Three spatial resolutions of soil input data were taken into consideration, corresponding to the following map scales: 1:50 000, 1:300 000 and 1:1 000 000. The four crop models were run for water-limited production conditions and model results were evaluated in the form of frequency distributions, depicted by bean-plots. In both regions, soil data aggregation had very small influence on the shape and range of frequency distributions of simulated yield and simulated total growing season evapotranspiration for all models. Further analysis revealed that the small influence of spatial resolution of soil input data might be related to: (a) the high precipitation amount in the region which partly masked differences in soil characteristics for water holding capacity, (b) the loss of variability in hydraulic soil properties due to the methods applied to calculate water retention properties of the used soil profiles, and (c) the method of soil data aggregation. No characteristic “fingerprint” between sites, years and resolutions could be found for any of the models. Our results support earlier recommendation to evaluate model results on the basis of frequency distributions since these offer quick and better insight into the distribution of simulation results as compared to summary statistics only. Finally, our results support conclusions from other studies about the usefulness of considering a multi-model approach to quantify the uncertainty in simulated yields introduced by the crop growth simulation approach when exploring the effects of scaling for regional yield impact assessments.
|
Angulo, C., Rötter, R., Lock, R., Enders, A., Fronzek, S., & Ewert, F. (2013). Implication of crop model calibration strategies for assessing regional impacts of climate change in Europe. Agricultural and Forest Meteorology, 170, 32–46.
Abstract: Process-based crop simulation models are increasingly used in regional climate change impact studies, but little is known about the implications of different calibration strategies on simulated yields. This study aims to assess the importance of region-specific calibration of five important field crops (winter wheat, winter barley, potato, sugar beet and maize) across 25 member countries of the European Union (EU25). We examine three calibration strategies and their implications on spatial and temporal yield variability in response to climate change: (i) calculation of phenology parameters only, (ii) consideration of both phenology calibration and a yield correction factor and (iii) calibration of phenology and selected growth processes. The analysis is conducted for 533 climate zones, considering 24 years of observed yield data (1983-2006). The best performing strategy is used to estimate the impacts of climate change, increasing CO2 concentration and technology development on yields for the five crops across EU25, using seven climate change scenarios for the period 2041-2064. Simulations and calibrations are performed with the crop model LINTUL2 combined with a calibration routine implemented in the modelling interface LINTUL-FAST. The results show that yield simulations improve if growth parameters are considered in the calibration for individual regions (strategy 3); e.g. RMSE values for simulated winter wheat yield are 2.36, 1.10 and 0.70 Mg ha(-1) for calibration strategies 1, 2 and 3, respectively. The calibration strategy did not only affect the model simulations under reference climate but also the extent of the simulated climate change impacts. Applying the calibrated model for impact assessment revealed that climatic change alone will reduce crop yields. Consideration of the effects of increasing CO2 concentration and technology development resulted in yield increases for all crops except maize (i.e. the negative effects of climate change were outbalanced by the positive effects of CO2 and technology change), with considerable differences between scenarios and regions. Our simulations also suggest some increase in yield variability due to climate change which, however, is less pronounced than the differences among scenarios which are particularly large when the effects of CO2 concentration and technology development are considered. Our results stress the need for region-specific calibration of crop models used for Europe-wide assessments. Limitations of the considered strategies are discussed. We recommend that future work should focus on obtaining more comprehensive, high quality data with a finer resolution allowing application of improved strategies for model calibration that better account for spatial differences and changes over time in the growth and development parameters used in crop models. (c) 2012 Elsevier B.V. All rights reserved.
|
Angulo, C., Rötter, R., Trnka, M., Pirttioja, N., Gaiser, T., Hlavinka, P., et al. (2013). Characteristic ‘fingerprints’ of crop model responses to weather input data at different spatial resolutions. European Journal of Agronomy, 49, 104–114.
Abstract: Crop growth simulation models are increasingly used for regionally assessing the effects of climate change and variability on crop yields. These models require spatially and temporally detailed, location-specific, environmental (weather and soil) and management data as inputs, which are often difficult to obtain consistently for larger regions. Aggregating the resolution of input data for crop model applications may increase the uncertainty of simulations to an extent that is not well understood. The present study aims to systematically analyse the effect of changes in the spatial resolution of weather input data on yields simulated by four crop models (LINTUL-SLIM, DSSAT-CSM, EPIC and WOFOST) which were utilized to test possible interactions between weather input data resolution and specific modelling approaches representing different degrees of complexity. The models were applied to simulate grain yield of spring barley in Finland for 12 years between 1994 and 2005 considering five spatial resolutions of daily weather data: weather station (point) and grid-based interpolated data at resolutions of 10 km x 10 km; 20 km x 20 km; 50 km x 50 km and 100 km x 100 km. Our results show that the differences between models were larger than the effect of the chosen spatial resolution of weather data for the considered years and region. When displaying model results graphically, each model exhibits a characteristic ‘fingerprint’ of simulated yield frequency distributions. These characteristic distributions in response to the inter-annual weather variability were independent of the spatial resolution of weather input data. Using one model (LINTUL-SLIM), we analysed how the aggregation strategy, i.e. aggregating model input versus model output data, influences the simulated yield frequency distribution. Results show that aggregating weather data has a smaller effect on the yield distribution than aggregating simulated yields which causes a deformation of the model fingerprint. We conclude that changes in the spatial resolution of weather input data introduce less uncertainty to the simulations than the use of different crop models but that more evaluation is required for other regions with a higher spatial heterogeneity in weather conditions, and for other input data related to soil and crop management to substantiate our findings. Our results provide further evidence to support other studies stressing the importance of using not just one, but different crop models in climate assessment studies. (C) 2013 Elsevier B.V. All rights reserved.
|
Asseng, S., Ewert, F., Rosenzweig, C., Jones, J. W., Hatfield, J. L., Ruane, A. C., et al. (2013). Uncertainty in simulating wheat yields under climate change. Nat. Clim. Change, 3(9), 827–832.
Abstract: Projections of climate change impacts on crop yields are inherently uncertain(1). Uncertainty is often quantified when projecting future greenhouse gas emissions and their influence on climate(2). However, multi-model uncertainty analysis of crop responses to climate change is rare because systematic and objective comparisons among process-based crop simulation models(1,3) are difficult(4). Here we present the largest standardized model intercomparison for climate change impacts so far. We found that individual crop models are able to simulate measured wheat grain yields accurately under a range of environments, particularly if the input information is sufficient. However, simulated climate change impacts vary across models owing to differences in model structures and parameter values. A greater proportion of the uncertainty in climate change impact projections was due to variations among crop models than to variations among downscaled general circulation models. Uncertainties in simulated impacts increased with CO2 concentrations and associated warming. These impact uncertainties can be reduced by improving temperature and CO2 relationships in models and better quantified through use of multi-model ensembles. Less uncertainty in describing how climate change may affect agricultural productivity will aid adaptation strategy development and policymaking.
Keywords: crop production; models; food; co2; temperature; projections; adaptation; scenarios; ensemble; impacts
|