Tao, F., Roetter, R. P., Palosuo, T., Hernandez Diaz-Ambrona, C. G., Ines Minguez, M., Semenov, M. A., et al. (2018). Contribution of crop model structure, parameters and climate projections to uncertainty in climate change impact assessments. Glob. Chang. Biol., 24(3), 1291–1307.
Abstract: Climate change impact assessments are plagued with uncertainties from many sources, such as climate projections or the inadequacies in structure and parameters of the impact model. Previous studies tried to account for the uncertainty from one or two of these. Here, we developed a triple-ensemble probabilistic assessment using seven crop models, multiple sets of model parameters and eight contrasting climate projections together to comprehensively account for uncertainties from these three important sources. We demonstrated the approach in assessing climate change impact on barley growth and yield at Jokioinen, Finland in the Boreal climatic zone and Lleida, Spain in the Mediterranean climatic zone, for the 2050s. We further quantified and compared the contribution of crop model structure, crop model parameters and climate projections to the total variance of ensemble output using Analysis of Variance (ANOVA). Based on the triple-ensemble probabilistic assessment, the median of simulated yield change was -4% and +16%, and the probability of decreasing yield was 63% and 31% in the 2050s, at Jokioinen and Lleida, respectively, relative to 1981-2010. The contribution of crop model structure to the total variance of ensemble output was larger than that from downscaled climate projections and model parameters. The relative contribution of crop model parameters and downscaled climate projections to the total variance of ensemble output varied greatly among the seven crop models and between the two sites. The contribution of downscaled climate projections was on average larger than that of crop model parameters. This information on the uncertainty from different sources can be quite useful for model users to decide where to put the most effort when preparing or choosing models or parameters for impact analyses. We concluded that the triple-ensemble probabilistic approach that accounts for the uncertainties from multiple important sources provide more comprehensive information for quantifying uncertainties in climate change impact assessments as compared to the conventional approaches that are deterministic or only account for the uncertainties from one or two of the uncertainty sources.
|
|
Webber, H., White, J. W., Kimball, B. A., Ewert, F., Asseng, S., Rezaei, E. E., et al. (2018). Physical robustness of canopy temperature models for crop heat stress simulation across environments and production conditions. Field Crops Research, 216, 75–88.
Abstract: Despite widespread application in studying climate change impacts, most crop models ignore complex interactions among air temperature, crop and soil water status, CO2 concentration and atmospheric conditions that influence crop canopy temperature. The current study extended previous studies by evaluating Tc simulations from nine crop models at six locations across environmental and production conditions. Each crop model implemented one of an empirical (EMP), an energy balance assuming neutral stability (EBN) or an energy balance correcting for atmospheric stability conditions (EBSC) approach to simulate Tc. Model performance in predicting Tc was evaluated for two experiments in continental North America with various water, nitrogen and CO2 treatments. An empirical model fit to one dataset had the best performance, followed by the EBSC models. Stability conditions explained much of the differences between modeling approaches. More accurate simulation of heat stress will likely require use of energy balance approaches that consider atmospheric stability conditions.
|
|
Yin, X. G., Kersebaum, K. C., Kollas, C., Manevski, K., Baby, S., Beaudoin, N., et al. (2017). Performance of process-based models for simulation of grain N in crop rotations across Europe. Agric. Syst., 154, 63–77.
Abstract: The accurate estimation of crop grain nitrogen (N; N in grain yield) is crucial for optimizing agricultural N management, especially in crop rotations. In the present study, 12 process-based models were applied to simulate the grain N of i) seven crops in rotations, ii) across various pedo-climatic and agro-management conditions in Europe, under both continuous simulation and single year simulation, and for iv) two calibration levels, namely minimal and detailed calibration. Generally, the results showed that the accuracy of the simulations in predicting grain N increased under detailed calibration. The models performed better in predicting the grain N of winter wheat (Triticum aestivum L.), winter barley (Hordewn vulgare L.) and spring barley (Hordeum vulgare L.) compared to spring oat (Avena saliva L.), winter rye (Secale cereale L.), pea (Piswn sativum L.) and winter oilseed rape (Brassica napus L.). These differences are linked to the intensity of parameterization with better parameterized crops showing lower prediction errors. The model performance was influenced by N fertilization and irrigation treatments, and a majority of the predictions were more accurate under low N and rainfed treatments. Moreover, the multi-model mean provided better predictions of grain N compared to any individual model. In regard to the Individual models, DAISY, FASSET, HERMES, MONICA and STICS are suitable for predicting grain N of the main crops in typical European crop rotations, which all performed well in both continuous simulation and single year simulation. Our results show that both the model initialization and the cover crop effects in crop rotations should be considered in order to achieve good performance of continuous simulation. Furthermore, the choice of either continuous simulation or single year simulation should be guided by the simulation objectives (e.g. grain yield, grain N content or N dynamics), the crop sequence (inclusion of legumes) and treatments (rate and type of N fertilizer) included in crop rotations and the model formalism.
|
|
Wallach, D., Mearns, L. O., Ruane, A. C., Rötter, R. P., & Asseng, S. (2016). Lessons from climate modeling on the design and use of ensembles for crop modeling. Clim. Change, 139(3-4), 551–564.
Abstract: Working with ensembles of crop models is a recent but important development in crop modeling which promises to lead to better uncertainty estimates for model projections and predictions, better predictions using the ensemble mean or median, and closer collaboration within the modeling community. There are numerous open questions about the best way to create and analyze such ensembles. Much can be learned from the field of climate modeling, given its much longer experience with ensembles. We draw on that experience to identify questions and make propositions that should help make ensemble modeling with crop models more rigorous and informative. The propositions include defining criteria for acceptance of models in a crop MME, exploring criteria for evaluating the degree of relatedness of models in a MME, studying the effect of number of models in the ensemble, development of a statistical model of model sampling, creation of a repository for MME results, studies of possible differential weighting of models in an ensemble, creation of single model ensembles based on sampling from the uncertainty distribution of parameter values or inputs specifically oriented toward uncertainty estimation, the creation of super ensembles that sample more than one source of uncertainty, the analysis of super ensemble results to obtain information on total uncertainty and the separate contributions of different sources of uncertainty and finally further investigation of the use of the multi-model mean or median as a predictor.
|
|
Bindi, M., Palosuo, T., Trnka, M., & Semenov, M. A. (2015). Modelling climate change impacts on crop production for food security INTRODUCTION. Clim. Res., 65, 3–5.
Abstract: Process-based crop models that synthesise the latest scientific understanding of biophysical processes are currently the primary scientific tools available to assess potential impacts of climate change on crop production. Important obstacles are still present, however, and must be overcome for improving crop modelling application in integrated assessments of risk, of sustainability and of crop-production resilience in the face of climate change (e.g. uncertainty analysis, model integration, etc.). The research networks MACSUR and AGMIP organised the CropM International Symposium and Workshop in Oslo, on 10-12 February 2014, and present this CR Special, discussing the state-of-the-art-as well as future perspectives-of crop modelling applications in climate change risk assessment, including the challenges of integrated assessments for the agricultural sector.
|
|