Home | << 1 >> |
Dono, G., Cortignani, R., Doro, L., Giraldo, L., Ledda, L., Pasqui, M., et al. (2013). Adapting to uncertainty associated with short-term climate variability changes in irrigated Mediterranean farming systems. Agricultural Systems, 117, 1–12.
Abstract: Short-term perspectives appear to be relevant in formulating adaptation measures to changed climate variability (CCV) as a part of the European Rural Development Policy (RDP). Indeed, short-run CCV is the variation that farmers would perceive to such an extent that a political demand would be generated for adapting support measures. This study evaluates some relevant agronomic and economic impacts of CCV as modelled in a near future time period at the catchment scale in a rural district in Sardinia (Italy). The effects of CCV are assessed in relation to the availability of irrigation water and the irrigation needs of maize. The Environmental Policy Integrated Climate (EPIC) model was used to simulate the impact of key climatic variables on the irrigation water requirements and yields of maize. A three-stage discrete stochastic programming model was then applied to simulate management and economic responses to those changes. The overall economic impact of a simulated CCV was found to be primarily caused by reduced stability in the future supply of irrigation water. Adaptations to this instability will most likely lead to a higher level of groundwater extraction and a reduction in the demand for labour. Changed climate variability will most likely reduce the income potential of small-scale farming. The most CCV-vulnerable farm typologies were identified, and the implications were discussed in relation to the development of adaptation measures within the context of the Common Agricultural Policy of European Union. (C) 2013 Elsevier Ltd. All rights reserved.
|
Höglind, M., Thorsen, S. M., & Semenov, M. A. (2013). Assessing uncertainties in impact of climate change on grass production in Northern Europe using ensembles of global climate models. Agricultural and Forest Meteorology, 170, 103–113.
Abstract: Forage-based dairy and livestock production is the backbone of agriculture in Northern Europe in economic terms. Changes in growing conditions that affect forage grass yield may have great economic consequences. This study assessed the impact of climate change on two grass species, timothy and ryegrass, at 14 locations in Northern Europe (Iceland, Scandinavia, Baltic countries) in a near-future scenario (2040-2065) compared with the baseline period 1960-1990. Local-scale climate scenarios were based on the CMIP3 multi-model ensembles of 15 global climate models in order to quantify the uncertainty in the impacts relating to highly uncertain projections of future climate. Potential yield of timothy, the most important perennial forage grass in Northern Europe, was simulated under the assumption of optimal overwintering conditions and current CO2 level, in order to obtain an estimate of the effect of changes in summer climate per se. The risk of frost and ice damage during winter was also assessed. The simulation results demonstrated that potential grass yield will increase throughout the study area, mainly as a result of increased growing temperatures. The yield response to climate change was slightly larger in irrigated than non-irrigated conditions (14% and 11%, respectively), due to larger water deficit for the 2050 scenario. However, a geo-climatic gradient was evident, with the largest predicted yield response at western locations. A geo-climatic gradient was also revealed with respect to potential frost damage, which was predicted to increase during winter in some areas east of the Baltic Sea for timothy, and for a larger number of locations both east and west of the Baltic Sea for perennial ryegrass. The risk of frost damage in spring was predicted to increase mainly in western parts of the study area. If frost damage to perennial ryegrass increases during winter, the expected increase in winter temperature due to global warming may not necessarily improve overwintering conditions, so the growing zone may not necessarily expand to the north and east of the study area by 2050. The uncertainty in impacts was frequently, but not consistently, greater in western than eastern locations. (C) 2012 Elsevier B.V. All rights reserved.
|
Lorite, I. J., Gabaldon-Leal, C., Ruiz-Ramos, M., Belaj, A., de la Rosa, R., Leon, L., et al. (2018). Evaluation of olive response and adaptation strategies to climate change under semi-arid conditions. Agric. Water Manage., 204, 247–261.
Abstract: AdaptaOlive is a simplified physically-based model that has been developed to assess the behavior of olive under future climate conditions in Andalusia, southern Spain. The integration of different approaches based on experimental data from previous studies, combined with weather data from 11 climate models, is aimed at overcoming the high degree of uncertainty in the simulation of the response of agricultural systems under predicted climate conditions. The AdaptaOlive model was applied in a representative olive orchard in the Baeza area, one of the main producer zone in Spain, with the cultivar ‘Picual’. Simulations for the end of the 21st century showed olive oil yield increases of 7.1 and 28.9% under rainfed and full irrigated conditions, respectively, while irrigation requirements decreased between 0.5 and 6.2% for full irrigation and regulated deficit irrigation, respectively. These effects were caused by the positive impact of the increase in atmospheric CO2 that counterbalanced the negative impacts of the reduction in rainfall. The high degree of uncertainty associated with climate projections translated into a high range of yield and irrigation requirement projections, confirming the need for an ensemble of climate models in climate change impact assessment. The AdaptaOlive model also was applied for evaluating adaptation strategies related to cultivars, irrigation strategies and locations. The best performance was registered for cultivars with early flowering dates and regulated deficit irrigation. Thus, in the Baeza area full irrigation requirements were reduced by 12% and the yield in rainfed conditions increased by 7% compared with late flowering cultivars. Similarly, regulated deficit irrigation requirements and yield were reduced by 46% and 18%, respectively, compared with full irrigation. The results confirm the promise offered by these strategies as adaptation measures for managing an olive crop under semi-arid conditions in a changing climate.
|
Schmitz, C., Kreidenweis, U., Lotze-Campen, H., Popp, A., Krause, M., Dietrich, J. P., et al. (2014). Agricultural trade and tropical deforestation: interactions and related policy options. Reg Environ Change, 15(8), 1757–1772.
Abstract: The extensive clearing of tropical forests throughout past decades has been partly assigned to increased trade in agricultural goods. Since further trade liberalisation can be expected, remaining rainforests are likely to face additional threats with negative implications for climate mitigation and the local environment. We apply a spatially explicit economic land-use model coupled to a biophysical vegetation model to examine linkages and associated policies between trade and tropical deforestation in the future. Results indicate that further trade liberalisation leads to an expansion of deforestation in Amazonia due to comparative advantages of agriculture in South America. Globally, between 30 and 60 million ha (5-10 %) of tropical rainforests would be cleared additionally, leading to 20-40 Gt additional emissions by 2050. By applying different forest protection policies, those values could be reduced substantially. Most effective would be the inclusion of avoided deforestation into a global emissions trading scheme. Carbon prices corresponding to the concentration target of 550 ppm would prevent deforestation after 2020. Investing in agricultural productivity reduces pressure on tropical forests without the necessity of direct protection. In general, additional trade-induced demand from developed and emerging countries should be compensated by international efforts to protect natural resources in tropical regions.
|
Toscano, P., Genesio, L., Crisci, A., Vaccari, F. P., Ferrari, E., La Cava, P., et al. (2015). Empirical modelling of regional and national durum wheat quality. Agricultural and Forest Meteorology, 204, 67–78.
Abstract: The production of durum wheat in the Mediterranean basin is expected to experience increased variability in yield and quality as a consequence of climate change. To assess how environmental variables and agronomic practices affect grain protein content (GPC), a novel approach based on monthly gridded input data has been implemented to develop empirical model, and validated on historical time series to assess its capability to reproduce observed spatial and inter-annual GPC variability. The model was applied in four Italian regions and at the whole national scale and proved reliable and usable for operational purposes also in a forecast ‘real-time’ mode before harvesting. Precipitable water during autumn to winter and air temperature from anthesis to harvest were extremely important influences on GPC; these and additional variables, included in a linear model, were able to account for 95% of the variability in GPC that has occurred in the last 15 years in Italy. Our results are a unique example of the use of modelling as a predictive real-time platform and are a useful tool to understand better and forecast the impacts of future climate change projections on durum wheat production and quality.
|