Home | << 1 2 3 4 5 6 7 8 9 10 >> [11–20] |
Makowski, D. (2017). A simple Bayesian method for adjusting ensemble of crop model outputs to yield observations. Europ. J. Agron., 88, 76–83.
Abstract: Multi-model forecasting has drawn some attention in crop science for evaluating effect of climate change on crop yields. The principle is to run several individual process-based crop models under several climate scenarios in order to generate ensembles of output values. This paper describes a simple Bayesian method – called Bayes linear method- for updating ensemble of crop model outputs using yield observations. The principle is to summarize the ensemble of crop model outputs by its mean and variance, and then to adjust these two quantities to yield observations in order to reduce uncertainty. The adjusted mean and variance combine two sources of information, i.e., the ensemble of crop model outputs and the observations. Interestingly, with this method, observations collected under a given climate scenario can be used to adjust mean and variance of the model ensemble under a different scenario. Another advantage of the proposed method is that it does not rely on a separate calibration of each individual crop model. The uncertainty reduction resulting from the adjustment of an ensemble of crop models to observations was assessed in a numerical application. The implementation of the Bayes linear method systematically reduced uncertainty, but the results showed the effectiveness of this method varied in function of several factors, especially the accuracy of the yield observation, and the covariance between the crop model output and the observation. (C) 2015 Elsevier B.V. All rights reserved.
Keywords: Bayesian method; Climate change; Ensemble modelling; Uncertainty; Yield; Linear-Approach; Climate-Change; CO2
|
Makowski, D., Asseng, S., Ewert, F., Bassu, S., Durand, J. L., Li, T., et al. (2015). A statistical analysis of three ensembles of crop model responses to temperature and CO2 concentration. Agricultural and Forest Meteorology, 214-215, 483–493.
Abstract: Ensembles of process-based crop models are increasingly used to simulate crop growth for scenarios of temperature and/or precipitation changes corresponding to different projections of atmospheric CO2 concentrations. This approach generates large datasets with thousands of simulated crop yield data. Such datasets potentially provide new information but it is difficult to summarize them in a useful way due to their structural complexities. An associated issue is that it is not straightforward to compare crops and to interpolate the results to alternative climate scenarios not initially included in the simulation protocols. Here we demonstrate that statistical models based on random-coefficient regressions are able to emulate ensembles of process-based crop models. An important advantage of the proposed statistical models is that they can interpolate between temperature levels and between CO2 concentration levels, and can thus be used to calculate temperature and [CO2] thresholds leading to yield loss or yield gain, without rerunning the original complex crop models. Our approach is illustrated with three yield datasets simulated by 19 maize models, 26 wheat models, and 13 rice models. Several statistical models are fitted to these datasets, and are then used to analyze the variability of the yield response to [CO2] and temperature. Based on our results, we show that, for wheat, a [CO2] increase is likely to outweigh the negative effect of a temperature increase of +2 degrees C in the considered sites. Compared to wheat, required levels of [CO2] increase are much higher for maize, and intermediate for rice. For all crops, uncertainties in simulating climate change impacts increase more with temperature than with elevated [CO2].
|
Mandryk, M., Reidsma, P., & van Ittersum, M. K. (2012). Scenarios of long-term farm structural change for application in climate change impact assessment. Landscape Ecol., 27(4), 509–527.
Abstract: Towards 2050, climate change is one of the possible drivers that will change the farming landscape, but market, policy and technological development may be at least equally important. In the last decade, many studies assessed impacts of climate change and specific adaptation strategies. However, adaptation to climate change must be considered in the context of other driving forces that will cause farms of the future to look differently from today’s farms. In this paper we use a historical analysis of the influence of different drivers on farm structure, complemented with literature and stakeholder consultations, to assess future structural change of farms in a region under different plausible futures. As climate change is one of the drivers considered, this study thus puts climate change impact and adaptation into the context of other drivers. The province of Flevoland in the north of The Netherlands was used as case study, with arable farming as the main activity. To account for the heterogeneity of farms and to indicate possible directions of farm structural change, a farm typology was developed. Trends in past developments in farm types were analyzed with data from the Dutch agricultural census. The historical analysis allowed to detect the relative importance of driving forces that contributed to farm structural changes. Simultaneously, scenario assumptions about changes in these driving forces elaborated at global and European levels, were downscaled for Flevoland, to regional and farm type level in order to project impacts of drivers on farm structural change towards 2050. Input from stakeholders was also used to detail the downscaled scenarios and to derive historical and future relationships between drivers and farm structural change. These downscaled scenarios and future driver-farm structural change relationships were used to derive quantitative estimations of farm structural change at regional and farm type level in Flevoland. In addition, stakeholder input was used to also derive images of future farms in Flevoland. The estimated farm structural changes differed substantially between the two scenarios. Our estimations of farm structural change provide a proper context for assessing impacts of and adaptation to climate change in 2050 at crop and farm level.
|
Martre, P., Wallach, D., Asseng, S., Ewert, F., Jones, J. W., Rötter, R. P., et al. (2015). Multimodel ensembles of wheat growth: many models are better than one. Glob. Chang. Biol., 21(2), 911–925.
Abstract: Crop models of crop growth are increasingly used to quantify the impact of global changes due to climate or crop management. Therefore, accuracy of simulation results is a major concern. Studies with ensembles of crop models can give valuable information about model accuracy and uncertainty, but such studies are difficult to organize and have only recently begun. We report on the largest ensemble study to date, of 27 wheat models tested in four contrasting locations for their accuracy in simulating multiple crop growth and yield variables. The relative error averaged over models was 24-38% for the different end-of-season variables including grain yield (GY) and grain protein concentration (GPC). There was little relation between error of a model for GY or GPC and error for in-season variables. Thus, most models did not arrive at accurate simulations of GY and GPC by accurately simulating preceding growth dynamics. Ensemble simulations, taking either the mean (e-mean) or median (e-median) of simulated values, gave better estimates than any individual model when all variables were considered. Compared to individual models, e-median ranked first in simulating measured GY and third in GPC. The error of e-mean and e-median declined with an increasing number of ensemble members, with little decrease beyond 10 models. We conclude that multimodel ensembles can be used to create new estimators with improved accuracy and consistency in simulating growth dynamics. We argue that these results are applicable to other crop species, and hypothesize that they apply more generally to ecological system models.
|
McKersie, B. (2015). Planning for food security in a changing climate. J. Experim. Bot., 66(12), 3435–3450.
Abstract: The Intergovernmental Panel on Climate Change and other international agencies have concluded that global crop production is at risk due to climate change, population growth, and changing food preferences. Society expects that the agricultural sciences will innovate solutions to these problems and provide food security for the foreseeable future. My thesis is that an integrated research plan merging agronomic and genetic approaches has the greatest probability of success. I present a template for a research plan based on the lessons we have learned from the Green Revolution and from the development of genetically engineered crops that may guide us to meet this expectation. The plan starts with a vision of how the crop management system could change, and I give a few examples of innovations that are very much in their infancy but have significant potential. The opportunities need to be conceptualized on a regional basis for each crop to provide a target for change. The plan gives an overview of how the tools of plant biotechnology can be used to create the genetic diversity needed to implement the envisioned changes in the crop management system, using the development of drought tolerance in maize (Zea mays L.) as an example that has led recently to the commercial release of new hybrids in the USA. The plan requires an interdisciplinary approach that integrates and coordinates research on plant biotechnology, genetics, physiology, breeding, agronomy, and cropping systems to be successful.
|