Home | << 1 2 3 4 5 6 7 8 9 10 >> [11–20] |
Elsgaard, L., Børgesen, C. D., Olesen, J. E., Siebert, S., Ewert, F., Peltonen-Sainio, P., et al. (2012). Shifts in comparative advantages for maize, oat and wheat cropping under climate change in Europe. Food Addit. Contam. Part A, 29(10), 1514–1526.
Abstract: Climate change is anticipated to affect European agriculture, including the risk of emerging or re-emerging feed and food hazards. Indirectly, climate change may influence such hazards (e.g. the occurrence of mycotoxins) due to geographic shifts in the distribution of major cereal cropping systems and the consequences this may have for crop rotations. This paper analyses the impact of climate on cropping shares of maize, oat and wheat on a 50-km square grid across Europe (45-65°N) and provides model-based estimates of the changes in cropping shares in response to changes in temperature and precipitation as projected for the time period around 2040 by two regional climate models (RCM) with a moderate and a strong climate change signal, respectively. The projected cropping shares are based on the output from the two RCMs and on algorithms derived for the relation between meteorological data and observed cropping shares of maize, oat and wheat. The observed cropping shares show a south-to-north gradient, where maize had its maximum at 45-55°N, oat had its maximum at 55-65°N, and wheat was more evenly distributed along the latitudes in Europe. Under the projected climate changes, there was a general increase in maize cropping shares, whereas for oat no areas showed distinct increases. For wheat, the projected changes indicated a tendency towards higher cropping shares in the northern parts and lower cropping shares in the southern parts of the study area. The present modelling approach represents a simplification of factors determining the distribution of cereal crops, and also some uncertainties in the data basis were apparent. A promising way of future model improvement could be through a systematic analysis and inclusion of other variables, such as key soil properties and socio-economic conditions, influencing the comparative advantages of specific crops.
Keywords: Agriculture/*economics/trends; Animals; Avena/chemistry/economics/*growth & development/microbiology; *Climate Change/economics; Crops, Agricultural/chemistry/economics/*growth & development/microbiology; Europe; *Food Safety; Forecasting/methods; Fungi/growth & development/metabolism; Humans; Models, Biological; Models, Economic; Mycotoxins/analysis/biosynthesis; Soil Pollutants/adverse effects/analysis; Spatio-Temporal Analysis; Triticum/chemistry/economics/*growth & development/microbiology; Uncertainty; Weather; Zea mays/chemistry/economics/*growth & development/microbiology
|
Eyshi Rezaei, E., Webber, H., Gaiser, T., Naab, J., & Ewert, F. (2015). Heat stress in cereals: Mechanisms and modelling. European Journal of Agronomy, 64, 98–113.
Abstract: Increased climate variability and higher mean temperatures are expected across many world regions, both of which will contribute to more frequent extreme high temperatures events. Empirical evidence increasingly shows that short episodes of high temperature experienced around flowering can have large negative impacts on cereal grain yields, a phenomenon increasingly referred to as heat stress. Crop models are currently the best tools available to investigate how crops will grow under future climatic conditions, though the need to include heat stress effects has been recognized only relatively recently. We reviewed literature on both how key crop physiological processes and the observed yields under production conditions are impacted by high temperatures occurring particularly in the flowering and grain filling phases for wheat, maize and rice. This state of the art in crop response to heat stress was then contrasted with generic approaches to simulate the impacts of high temperatures in crop growth models. We found that the observed impacts of heat stress on crop yield are the end result of the integration of many processes, not all of which will be affected by a “high temperature” regime. This complexity confirms an important role for crop models in systematizing the effects of high temperatures on many processes under a range of environments and realizations of crop phenology. Four generic approaches to simulate high temperature impacts on yield were identified: (1) empirical reduction of final yield, (2) empirical reduction in daily increment in harvest index, (3) empirical reduction in grain number, and (4) semi-deterministic models of sink and source limitation. Consideration of canopy temperature is suggested as a promising approach to concurrently account for heat and drought stress, which are likely to occur simultaneously. Improving crop models’ response to high temperature impacts on cereal yields will require experimental data representative of field production and should be designed to connect what is already known about physiological responses and observed yield impacts. (C) 2014 Elsevier B.V. All rights reserved.
Keywords: high temperature; heat stress; cereal yield; climate change impact; crop modelling; high-temperature stress; tropical maize hybrids; triticum-aestivum l; high-yielding rice; induced spikelet sterility; stem reserve mobilization; climate-change impacts; oryza-sativa l.; grain-yield; kernel set
|
Eza, U., Shtiliyanova, A., Borras, D., Bellocchi, G., Carrère, P., & Martin, R. (2015). An open platform to assess vulnerabilities to climate change: An application to agricultural systems. Ecological Informatics, 30, 389–396.
Abstract: Numerous climate futures are now available from global climate models. Translation of climate data such as precipitation and temperatures into ecologically meaningful outputs for managers and planners is the next frontier. We describe a model-based open platform to assess vulnerabilities of agricultural systems to climate change on pixel-wise data. The platform includes a simulation modeling engine and is suited to work with NetCDF format of input and output files. In a case study covering a region (Auvergne) in the Massif Central of France, the platform is configured to characterize climate (occurrence of arid conditions in historical and projected climate records), soils and human management, and is then used to assess the vulnerability to climate change of grassland productivity (downscaled to a fine scale). We demonstrate how using climate time series, and process-based simulations vulnerabilities can be defined at fine spatial scales relevant to farmers and land managers, and can be incorporated into management frameworks. (C) 2015 Elsevier B.V. All rights reserved.
|
Faye, B., Webber, H., Naab, J. B., MacCarthy, D. S., Adam, M., Ewert, F., et al. (2018). Impacts of 1.5 versus 2.0 degrees C on cereal yields in the West African Sudan Savanna. Environ. Res. Lett., 13(3), 034014.
Abstract: To reduce the risks of climate change, governments agreed in the Paris Agreement to limit global temperature rise to less than 2.0 degrees C above pre-industrial levels, with the ambition to keep warming to 1.5 degrees C. Charting appropriate mitigation responses requires information on the costs of mitigating versus associated damages for the two levels of warming. In this assessment, a critical consideration is the impact on crop yields and yield variability in regions currently challenged by food insecurity. The current study assessed impacts of 1.5 degrees C versus 2.0 degrees C on yields of maize, pearl millet and sorghum in the West African Sudan Savanna using two crop models that were calibrated with common varieties from experiments in the region with management reflecting a range of typical sowing windows. As sustainable intensification is promoted in the region for improving food security, simulations were conducted for both current fertilizer use and for an intensification case (fertility not limiting). With current fertilizer use, results indicated 2% units higher losses for maize and sorghum with 2.0 degrees C compared to 1.5 degrees C warming, with no change in millet yields for either scenario. In the intensification case, yield losses due to climate change were larger than with current fertilizer levels. However, despite the larger losses, yields were always two to three times higher with intensification, irrespective of the warming scenario. Though yield variability increased with intensification, there was no interaction with warming scenario. Risk and market analysis are needed to extend these results to understand implications for food security.
|
Fronzek, S., Pirttioja, N., Carter, T. R., Bindi, M., Hoffmann, H., Palosuo, T., et al. (2018). Classifying multi-model wheat yield impact response surfaces showing sensitivity to temperature and precipitation change. Agric. Syst., 159, 209–224.
Abstract: Crop growth simulation models can differ greatly in their treatment of key processes and hence in their response to environmental conditions. Here, we used an ensemble of 26 process-based wheat models applied at sites across a European transect to compare their sensitivity to changes in temperature (-2 to +9 degrees C) and precipitation (-50 to +50%). Model results were analysed by plotting them as impact response surfaces (IRSs), classifying the IRS patterns of individual model simulations, describing these classes and analysing factors that may explain the major differences in model responses. The model ensemble was used to simulate yields of winter and spring wheat at four sites in Finland, Germany and Spain. Results were plotted as IRSs that show changes in yields relative to the baseline with respect to temperature and precipitation. IRSs of 30-year means and selected extreme years were classified using two approaches describing their pattern. The expert diagnostic approach (EDA) combines two aspects of IRS patterns: location of the maximum yield (nine classes) and strength of the yield response with respect to climate (four classes), resulting in a total of 36 combined classes defined using criteria pre-specified by experts. The statistical diagnostic approach (SDA) groups IRSs by comparing their pattern and magnitude, without attempting to interpret these features. It applies a hierarchical clustering method, grouping response patterns using a distance metric that combines the spatial correlation and Euclidian distance between IRS pairs. The two approaches were used to investigate whether different patterns of yield response could be related to different properties of the crop models, specifically their genealogy, calibration and process description. Although no single model property across a large model ensemble was found to explain the integrated yield response to temperature and precipitation perturbations, the application of the EDA and SDA approaches revealed their capability to distinguish: (i) stronger yield responses to precipitation for winter wheat than spring wheat; (ii) differing strengths of response to climate changes for years with anomalous weather conditions compared to period-average conditions; (iii) the influence of site conditions on yield patterns; (iv) similarities in IRS patterns among models with related genealogy; (v) similarities in IRS patterns for models with simpler process descriptions of root growth and water uptake compared to those with more complex descriptions; and (vi) a closer correspondence of IRS patterns in models using partitioning schemes to represent yield formation than in those using a harvest index. Such results can inform future crop modelling studies that seek to exploit the diversity of multi-model ensembles, by distinguishing ensemble members that span a wide range of responses as well as those that display implausible behaviour or strong mutual similarities.
|