Home | << 1 >> |
Castañeda-Vera, A., Leffelaar, P. A., Álvaro-Fuentes, J., Cantero-Martínez, C., & Mínguez, M. I. (2015). Selecting crop models for decision making in wheat insurance. European Journal of Agronomy, 68, 97–116.
Abstract: In crop insurance, the accuracy with which the insurer quantifies the actual risk is highly dependent on the availability on actual yield data. Crop models might be valuable tools to generate data on expected yields for risk assessment when no historical records are available. However, selecting a crop model for a specific objective, location and implementation scale is a difficult task. A look inside the different crop and soil modules to understand how outputs are obtained might facilitate model choice. The objectives of this paper were (i) to assess the usefulness of crop models to be used within a crop insurance analysis and design and (ii) to select the most suitable crop model for drought risk assessment in semi-arid regions in Spain. For that purpose first, a pre-selection of crop models simulating wheat yield under rainfed growing conditions at the field scale was made, and second, four selected models (Aquacrop, CERES-Wheat, CropSyst and WOFOST) were compared in terms of modelling approaches, process descriptions and model outputs. Outputs of the four models for the simulation of winter wheat growth are comparable when water is not limiting, but differences are larger when simulating yields under rainfed conditions. These differences in rainfed yields are mainly related to the dissimilar simulated soil water availability and the assumed linkages with dry matter formation. We concluded that for the simulation of winter wheat growth at field scale in such semi-arid conditions, CERES-Wheat and CropSyst are preferred. WOFOST is a satisfactory compromise between data availability and complexity when detail data on soil is limited. Aquacrop integrates physiological processes in some representative parameters, thus diminishing the number of input parameters, what is seen as an advantage when observed data is scarce. However, the high sensitivity of this model to low water availability limits its use in the region considered. Contrary to the use of ensembles of crop models, we endorse that efforts be concentrated on selecting or rebuilding a model that includes approaches that better describe the agronomic conditions of the regions in which they will be applied. The use of such complex methodologies as crop models is associated with numerous sources of uncertainty, although these models are the best tools available to get insight in these complex agronomic systems. (C) 2015 Elsevier B.V. All rights reserved.
|
Mittenzwei, K., Persson, T., Höglind, M., & Kværnø, S. (2017). Combined effects of climate change and policy uncertainty on the agricultural sector in Norway. Agric. Syst., 153, 118–126.
Abstract: Highlights • A framework to study climate and policy uncertainty in agriculture is presented. • Combining both sources of uncertainty has ambiguous effects on agriculture. • Uncertainty needs to be highlighted in modelling tools for policy analysis. Abstract Farmers are exposed to climate change and uncertainty about how that change will develop. As farm incomes, in Norway and elsewhere, greatly depend on government subsidies, the risk of a policy change constitutes an additional uncertainty source. Hence, climate and policy uncertainty could substantially impact agricultural production and farm income. However, these sources of uncertainty have, so far, rarely been combined in food production analyses. The aim of this study was to determine the effects of a combination of policy and climate uncertainty on agricultural production, land use, and social welfare in Norway. Output yield distributions of spring wheat and timothy, a major forage grass, from simulations with the weather-driven crop models, CSM-CERES-Wheat and, LINGRA, were processed in the a stochastic version Jordmod, a price-endogenous spatial economic sector model of the Norwegian agriculture. To account for potential effects of climate uncertainty within a given future greenhouse gas emission scenario on farm profitability, effects on conditions that represented the projected climate for 2050 under the emission scenario A1B from the 4th assessment report of the Intergovernmental Panel on Climate Change and four Global Climate Models (GCM) was investigated. The uncertainty about the level of payment rates at the time farmers make their management decisions was handled by varying the distribution of payment rates applied in the Jordmod model. These changes were based on the change in the overall level of agricultural support in the past. Three uncertainty scenarios were developed and tested: one with climate change uncertainty, another with payment rate uncertainty, and a third where both types of uncertainty were combined. The three scenarios were compared with results from a deterministic scenario where crop yields and payment rates were constant. Climate change resulted in on average 9% lower cereal production, unchanged grass production and more volatile crop yield as well as 4% higher farm incomes on average compared to the deterministic scenario. The scenario with a combination of climate change and policy uncertainty increased the mean farm income more than a scenario with only one source of uncertainty. On the other hand, land use and farm labour were negatively affected under these conditions compared to the deterministic case. Highlighting the potential influence of climate change and policy uncertainty on the performance of the farm sector our results underline the potential error in neglecting either of these two uncertainties in studies of agricultural production, land use and welfare.
Keywords: Climate change; Norway; Agriculture; Policy uncertainty; Modelling; LINGRA; CSM-CERES-Wheat; DSSAT
|
Rötter, R. P., Palosuo, T., Kersebaum, K. - C., Angulo, C., Bindi, M., Ewert, F., et al. (2012). Simulation of spring barley yield in different climatic zones of Northern and Central Europe: A comparison of nine crop models. Field Crops Research, 133, 23–36.
Abstract: ► We compared nine crop simulation models for spring barley at seven sites in Europe. ► Applying crop models with restricted calibration leads to high uncertainties. ► Multi-crop model mean yield estimates were in good agreement with observations. ► The degree of uncertainty for simulated grain yield of barley was similar to winter wheat. ► We need more suitable data enabling us to verify different processes in the models. In this study, the performance of nine widely used and accessible crop growth simulation models (APES-ACE, CROPSYST, DAISY, DSSAT-CERES, FASSET, HERMES, MONICA, STICS and WOFOST) was compared during 44 growing seasons of spring barley (Hordeum vulgare L) at seven sites in Northern and Central Europe. The aims of this model comparison were to examine how different process-based crop models perform at multiple sites across Europe when applied with minimal information for model calibration of spring barley at field scale, whether individual models perform better than the multi-model mean, and what the uncertainty ranges are in simulated grain yields. The reasons for differences among the models and how results for barley compare to winter wheat are discussed. Regarding yield estimation, best performing based on the root mean square error (RMSE) were models HERMES, MONICA and WOFOST with lowest values of 1124, 1282 and 1325 (kg ha(-1)), respectively. Applying the index of agreement (IA), models WOFOST, DAISY and HERMES scored best having highest values (0.632, 0.631 and 0.585, respectively). Most models systematically underestimated yields, whereby CROPSYST showed the highest deviation as indicated by the mean bias error (MBE) (-1159 kg ha(-1)). While the wide range of simulated yields across all sites and years shows the high uncertainties in model estimates with only restricted calibration, mean predictions from the nine models agreed well with observations. Results of this paper also show that models that were more accurate in predicting phenology were not necessarily the ones better estimating grain yields. Total above-ground biomass estimates often did not follow the patterns of grain yield estimates and, thus, harvest indices were also different. Estimates of soil moisture dynamics varied greatly. In comparison, even though the growing cycle for winter wheat is several months longer than for spring barley, using RMSE and IA as indicators, models performed slightly, but not significantly, better in predicting wheat yields. Errors in reproducing crop phenology were similar, which in conjunction with the shorter growth cycle of barley has higher effects on accuracy in yield prediction.
|
Rötter, R. P., Palosuo, T., Kersebaum, K. C., Angulo, C., Bindi, M., Ewert, F., et al. (2012). Simulation of spring barley yield in different climatic zones of Northern and Central Europe: A comparison of nine crop models. Field Crops Research, 133, 23–36.
Abstract: In this study, the performance of nine widely used and accessible crop growth simulation models (APES-ACE, CROPSYST, DAISY, DSSAT-CERES, FASSET, HERMES, MONICA, STICS and WOFOST) was compared during 44 growing seasons of spring barley (Hordeum vulgare L) at seven sites in Northern and Central Europe. The aims of this model comparison were to examine how different process-based crop models perform at multiple sites across Europe when applied with minimal information for model calibration of spring barley at field scale, whether individual models perform better than the multi-model mean, and what the uncertainty ranges are in simulated grain yields. The reasons for differences among the models and how results for barley compare to winter wheat are discussed. Regarding yield estimation, best performing based on the root mean square error (RMSE) were models HERMES, MONICA and WOFOST with lowest values of 1124, 1282 and 1325 (kg ha(-1)), respectively. Applying the index of agreement (IA), models WOFOST, DAISY and HERMES scored best having highest values (0.632, 0.631 and 0.585, respectively). Most models systematically underestimated yields, whereby CROPSYST showed the highest deviation as indicated by the mean bias error (MBE) (-1159 kg ha(-1)). While the wide range of simulated yields across all sites and years shows the high uncertainties in model estimates with only restricted calibration, mean predictions from the nine models agreed well with observations. Results of this paper also show that models that were more accurate in predicting phenology were not necessarily the ones better estimating grain yields. Total above-ground biomass estimates often did not follow the patterns of grain yield estimates and, thus, harvest indices were also different. Estimates of soil moisture dynamics varied greatly. In comparison, even though the growing cycle for winter wheat is several months longer than for spring barley, using RMSE and IA as indicators, models performed slightly, but not significantly, better in predicting wheat yields. Errors in reproducing crop phenology were similar, which in conjunction with the shorter growth cycle of barley has higher effects on accuracy in yield prediction. (C) 2012 Elsevier B.V. All rights reserved.
|
Toscano, P., Ranieri, R., Matese, A., Vaccari, F. P., Gioli, B., Zaldei, A., et al. (2012). Durum wheat modeling: The Delphi system, 11 years of observations in Italy. European Journal of Agronomy, 43, 108–118.
Abstract: ► Delphi system, based on AFRCWHEAT2 model, for durum wheat forecast. ► AFRCWHEAT2 model was calibrated and validated for three years. ► A scenario approach was applied to simulation of durum wheat yield. ► Operational mode for eleven years in rainfed and water limiting conditions. ► Accurate forecast as an useful planning tool. Crop models are frequently used in ecology, agronomy and environmental sciences for simulating crop and environmental variables at a discrete time step. The aim of this work was to test the predictive capacity of the Delphi system, calibrated and determined for each pedoclimatic factor affecting durum wheat during phenological development. at regional scale. We present an innovative system capable of predicting spatial yield variation and temporal yield fluctuation in long-term analysis, that are the main purposes of regional crop simulation study. The Delphi system was applied to simulate growth and yield of durum wheat in the major Italian supply basins (Basilicata, Capitanata, Marche, Tuscany). The model was validated and evaluated for three years (1995-1997) at 11 experimental fields and then used in operational mode for eleven years (1999-2009), showing an excellent/good accuracy in predicting grain yield even before maturity for a wide range of growing conditions in the Mediterranean climate, governed by different annual weather patterns. The results were evaluated on the basis of regression and normalized root mean squared error with known crop yield statistics at regional level. (c) 2012 Elsevier B.V. All rights reserved.
|