Home | << 1 2 3 4 >> |
Asseng, S., Ewert, F., Rosenzweig, C., Jones, J. W., Hatfield, J. L., Ruane, A. C., et al. (2013). Uncertainty in simulating wheat yields under climate change. Nat. Clim. Change, 3(9), 827–832.
Abstract: Projections of climate change impacts on crop yields are inherently uncertain(1). Uncertainty is often quantified when projecting future greenhouse gas emissions and their influence on climate(2). However, multi-model uncertainty analysis of crop responses to climate change is rare because systematic and objective comparisons among process-based crop simulation models(1,3) are difficult(4). Here we present the largest standardized model intercomparison for climate change impacts so far. We found that individual crop models are able to simulate measured wheat grain yields accurately under a range of environments, particularly if the input information is sufficient. However, simulated climate change impacts vary across models owing to differences in model structures and parameter values. A greater proportion of the uncertainty in climate change impact projections was due to variations among crop models than to variations among downscaled general circulation models. Uncertainties in simulated impacts increased with CO2 concentrations and associated warming. These impact uncertainties can be reduced by improving temperature and CO2 relationships in models and better quantified through use of multi-model ensembles. Less uncertainty in describing how climate change may affect agricultural productivity will aid adaptation strategy development and policymaking.
Keywords: crop production; models; food; co2; temperature; projections; adaptation; scenarios; ensemble; impacts
|
Bennetzen, E. H., Smith, P., Soussana, J. - F., & Porter, J. R. (2012). Identity-based estimation of greenhouse gas emissions from crop production: case study from Denmark. European Journal of Agronomy, 41, 66–72.
Abstract: In order to feed the world we need innovative thinking on how to increase agricultural production whilst also mitigating climate change. Agriculture and land-use change are responsible for approximately one-third of total anthropogenic greenhouse gas (GHG) emissions but hold potential for climate change mitigation but are only tangentially included in UNFCCC mitigation policies. To get a full estimate of GHG emissions from agricultural crop production both energy-based emissions and land-based emissions need to be accounted for. Furthermore, the major mitigation potential is likely to be indirect reduction of emissions i.e. reducing emissions per unit of agricultural product rather than the absolute emissions per se. Hence the system productivity must be included in the same analysis. This paper presents the Kaya-Porter identity, derived from the Maya identity, as a new way to calculate GHG emissions from agricultural crop production by deconstructing emissions into five elements; the GHG intensity of the energy used for production (kg CO2-eq./MJ), energy intensity of the production (MJ/kg dry matter), areal productivity (kg dry matter/ha), areal land-based GHG emissions (CO2-eq./ha) and area (ha). These separate elements in the identity can be targeted in emissions reduction and mitigation policies and are useful to analyse past and current trends in emissions and to explore future scenarios. Using the Kaya-Porter identity we have performed a case study on Danish crop production and find emissions to have been reduced by 12% from 1992 to 2008, whilst yields per unit area have remained constant. Both land-based emissions and energy-based emissions have decreased, mainly due to a 41% reduction in nitrogen fertilizer use. The initial identity based analysis for crop production presented here needs to be extended to include livestock to reflect the entire agricultural production and food demand sectors, thereby permitting analysis of the trade-offs between animal and plant food production, human dietary preferences and population and resulting GHG emissions. (C) 2012 Elsevier B.V. All rights reserved.
|
Bindi, M., Palosuo, T., Trnka, M., & Semenov, M. A. (2015). Modelling climate change impacts on crop production for food security INTRODUCTION. Clim. Res., 65, 3–5.
Abstract: Process-based crop models that synthesise the latest scientific understanding of biophysical processes are currently the primary scientific tools available to assess potential impacts of climate change on crop production. Important obstacles are still present, however, and must be overcome for improving crop modelling application in integrated assessments of risk, of sustainability and of crop-production resilience in the face of climate change (e.g. uncertainty analysis, model integration, etc.). The research networks MACSUR and AGMIP organised the CropM International Symposium and Workshop in Oslo, on 10-12 February 2014, and present this CR Special, discussing the state-of-the-art-as well as future perspectives-of crop modelling applications in climate change risk assessment, including the challenges of integrated assessments for the agricultural sector.
|
Bojar, W., Knopik, L., Żarski, J., Sławiński, C., Baranowski, P., & Żarski, W. (2014). Impact of extreme climate changes on the forecasted agriculture production. Acta Agrophysica, 21(4), 415–431.
Abstract: The paper presents general characteristics of resources and outputs of agriculture in the Kujawsko-Pomorskie and Lubelskie Regions, based on statistical databases and literature review. Some specific features of the regions, with special consideration for the predicted extreme climate changes, are also included. Next, some statistically significant dependencies between the climatic parameters and yields of selected important crops in the abovementioned regions were worked out on the basis of empirical survey conducted in the University of Technology and Life Sciences, Bydgoszcz, and the Institute of Agrophysics in Lublin. Creating an appropriate method of forecasting long series of ten days without precipitation was necessary to find the desired dependencies. Third, some efforts were taken to make integrated assessments of forecast agricultural outputs influenced by climate extreme phenomena on the basis of the yield-precipitation relations obtained and on the data coming from wide area model regional outputs such as prices of farmland and produce.
|
Dono, G., Cortignani, R., Doro, L., Giraldo, L., Ledda, L., Pasqui, M., et al. (2013). Adapting to uncertainty associated with short-term climate variability changes in irrigated Mediterranean farming systems. Agricultural Systems, 117, 1–12.
Abstract: Short-term perspectives appear to be relevant in formulating adaptation measures to changed climate variability (CCV) as a part of the European Rural Development Policy (RDP). Indeed, short-run CCV is the variation that farmers would perceive to such an extent that a political demand would be generated for adapting support measures. This study evaluates some relevant agronomic and economic impacts of CCV as modelled in a near future time period at the catchment scale in a rural district in Sardinia (Italy). The effects of CCV are assessed in relation to the availability of irrigation water and the irrigation needs of maize. The Environmental Policy Integrated Climate (EPIC) model was used to simulate the impact of key climatic variables on the irrigation water requirements and yields of maize. A three-stage discrete stochastic programming model was then applied to simulate management and economic responses to those changes. The overall economic impact of a simulated CCV was found to be primarily caused by reduced stability in the future supply of irrigation water. Adaptations to this instability will most likely lead to a higher level of groundwater extraction and a reduction in the demand for labour. Changed climate variability will most likely reduce the income potential of small-scale farming. The most CCV-vulnerable farm typologies were identified, and the implications were discussed in relation to the development of adaptation measures within the context of the Common Agricultural Policy of European Union. (C) 2013 Elsevier Ltd. All rights reserved.
|