toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Hamidov, A.; Helming, K.; Bellocchi, G.; Bojar, W.; Dalgaard, T.; Ghaley, B.B.; Hoffmann, C.; Holman, I.; Holzkämper, A.; Krzeminska, D.; Kværnø, S.H.; Lehtonen, H.; Niedrist, G.; Øygarden, L.; Reidsma, P.; Roggero, P.P.; Rusu, T.; Santos, C.; Seddaiu, G.; Skarbøvik, E.; Ventrella, D.; Żarski, J.; Schönhart, M. doi  openurl
  Title Impacts of climate change adaptation options on soil functions: A review of European case-studies Type Journal Article
  Year 2018 Publication Land Degradation & Development Abbreviated Journal Land Degradation & Development  
  Volume 29 Issue 8 Pages 2378-2389  
  Keywords agricultural adaptation; DPSIR; regional case-studies; soil degradation; Sustainable Development Goals; Agricultural Practices; Ecosystem Services; Land Management; Netherlands; Farm; Environment; Challenges; Catchments; Framework; Nitrogen  
  Abstract Soils are vital for supporting food security and other ecosystem services. Climate change can affect soil functions both directly and indirectly. Direct effects include temperature, precipitation, and moisture regime changes. Indirect effects include those that are induced by adaptations such as irrigation, crop rotation changes, and tillage practices. Although extensive knowledge is available on the direct effects, an understanding of the indirect effects of agricultural adaptation options is less complete. A review of 20 agricultural adaptation case-studies across Europe was conducted to assess implications to soil threats and soil functions and the link to the Sustainable Development Goals (SDGs). The major findings are as follows: (a) adaptation options reflect local conditions; (b) reduced soil erosion threats and increased soil organic carbon are expected, although compaction may increase in some areas; (c) most adaptation options are anticipated to improve the soil functions of food and biomass production, soil organic carbon storage, and storing, filtering, transforming, and recycling capacities, whereas possible implications for soil biodiversity are largely unknown; and (d) the linkage between soil functions and the SDGs implies improvements to SDG 2 (achieving food security and promoting sustainable agriculture) and SDG 13 (taking action on climate change), whereas the relationship to SDG 15 (using terrestrial ecosystems sustainably) is largely unknown. The conclusion is drawn that agricultural adaptation options, even when focused on increasing yields, have the potential to outweigh the negative direct effects of climate change on soil degradation in many European regions.  
  Address 2018-10-16  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1085-3278 ISBN Medium  
  Area Expedition Conference  
  Notes (down) XC, TradeM, ft_macsur Approved no  
  Call Number MA @ admin @ Serial 5210  
Permanent link to this record
 

 
Author Lotze-Campen, H.; Verburg, P.H.; Popp, A.; Lindner, M.; Verkerk, P.J.; Moiseyev, A.; Schrammeijer, E.; Helming, J.; Tabeau, A.; Schulp, C.J.E.; van der Zanden, E.H.; Lavalle, C.; e Silva, F.B.; Walz, A.; Bodirsky, B. url  doi
openurl 
  Title A cross-scale impact assessment of European nature protection policies under contrasting future socio-economic pathways Type Journal Article
  Year 2018 Publication Regional Environmental Change Abbreviated Journal Reg. Environ. Change  
  Volume 18 Issue 3 Pages 751-762  
  Keywords Land use change; Integrated modelling; Cross-scale interaction; Nature protection; Impact assessment  
  Abstract Protection of natural or semi-natural ecosystems is an important part of societal strategies for maintaining biodiversity, ecosystem services, and achieving overall sustainable development. The assessment of multiple emerging land use trade-offs is complicated by the fact that land use changes occur and have consequences at local, regional, and even global scale. Outcomes also depend on the underlying socio-economic trends. We apply a coupled, multi-scale modelling system to assess an increase in nature protection areas as a key policy option in the European Union (EU). The main goal of the analysis is to understand the interactions between policy-induced land use changes across different scales and sectors under two contrasting future socio-economic pathways. We demonstrate how complementary insights into land system change can be gained by coupling land use models for agriculture, forestry, and urban areas for Europe, in connection with other world regions. The simulated policy case of nature protection shows how the allocation of a certain share of total available land to newly protected areas, with specific management restrictions imposed, may have a range of impacts on different land-based sectors until the year 2040. Agricultural land in Europe is slightly reduced, which is partly compensated for by higher management intensity. As a consequence of higher costs, total calorie supply per capita is reduced within the EU. While wood harvest is projected to decrease, carbon sequestration rates increase in European forests. At the same time, imports of industrial roundwood from other world regions are expected to increase. Some of the aggregate effects of nature protection have very different implications at the local to regional scale in different parts of Europe. Due to nature protection measures, agricultural production is shifted from more productive land in Europe to on average less productive land in other parts of the world. This increases, at the global level, the allocation of land resources for agriculture, leading to a decrease in tropical forest areas, reduced carbon stocks, and higher greenhouse gas emissions outside of Europe. The integrated modelling framework provides a method to assess the land use effects of a single policy option while accounting for the trade-offs between locations, and between regional, European, and global scales.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1436-3798 ISBN Medium  
  Area TradeM Expedition Conference  
  Notes (down) TradeM, ftnotmacsur Approved no  
  Call Number MA @ admin @ Serial 5004  
Permanent link to this record
 

 
Author Lehtonen, H.; Palosuo, T.; Korhonen, P.; Liu, X. url  doi
openurl 
  Title Higher Crop Yield Levels in the North Savo Region—Means and Challenges Indicated by Farmers and Their Close Stakeholders Type Journal Article
  Year 2018 Publication Agriculture Abbreviated Journal Agriculture  
  Volume 8 Issue 7 Pages 93  
  Keywords northern Europe; forage grasslands; spring cereals; drainage; soil conidtions; farm management; agricultural policy  
  Abstract The sustainable intensification of farming systems is expected to increase food supply and reduce the negative environmental effects of agriculture. It is also seen as an effective adaptation and mitigation strategy in response to climate change. Our aim is to determine farmers’ and other stakeholders’ views on how higher crop yields can be achieved from their currently low levels. This was investigated in two stakeholder workshops arranged in North Savo, Finland, in 2014 and 2016. The workshop participants, who were organized in discussion groups, considered some agricultural policies to discourage the improvement of crop yields. Policy schemes were seen to support extensification and reduce the motivation for yield improvements. However, the most important means for higher crop yields indicated by workshop participants were improved soil conditions with drainage and liming, in addition to improved crop rotations, better sowing techniques, careful selection of cultivars and forage grass mixtures. Suggested solutions for improving both crop yields and farm income also included optimized use of inputs, focusing production at the most productive fields and actively developed farming skills and knowledge sharing. These latter aspects were more pronounced in 2016, suggesting that farmers’ skills are increasingly being perceived as important.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2077-0472 ISBN Medium  
  Area Expedition Conference  
  Notes (down) TradeM, ft_macsur Approved no  
  Call Number MA @ admin @ Serial 5203  
Permanent link to this record
 

 
Author Mitter, H.; Schoenhart, M.; Larcher, M.; Schmid, E. doi  openurl
  Title The Stimuli-Actions-Effects-Responses (SAER)-framework for exploring perceived relationships between private and public climate change adaptation in agriculture Type Journal Article
  Year 2018 Publication Journal of Environmental Management Abbreviated Journal J. Environ. Manage.  
  Volume 209 Issue Pages 286-300  
  Keywords Climate change perception; Private adaptation, Public adaptation; Qualitative analysis; Adaptation stimulus; Adaptation effect; Transformational Adaptation; Adapting Agriculture; Farmers Perceptions; Change Scenarios; Decision-Making; Change Impacts; Land-Use; Vulnerability; Framework; Science  
  Abstract Empirical findings on actors’ roles and responsibilities in the climate change adaptation process are rare even though cooperation between private and public actors is perceived important to foster adaptation in agriculture. We therefore developed the framework SAER (Stimuli-Actions-Effects-Responses) to investigate perceived relationships between private and public climate change adaptation in agriculture at regional scale. In particular, we explore agricultural experts’ perceptions on (i) climatic and non climatic factors stimulating private adaptation, (ii) farm adaption actions, (iii) potential on-farm and off-farm effects from adaptation, and (iv) the relationships between private and public adaptation. The SAER-framework is built on a comprehensive literature review and empirical findings from semi structured interviews with agricultural experts from two case study regions in Austria. We find that private adaptation is perceived as incremental, systemic or transformational. It is typically stimulated by a mix of bio-physical and socio-economic on-farm and off-farm factors. Stimulating factors related to climate change are perceived of highest relevance for systemic and transformational adaptation whereas already implemented adaptation is mostly perceived to be incremental. Perceived effects of private adaptation are related to the environment, weather and climate, quality and quantity of agricultural products as well as human, social and economic resources. Our results also show that public adaptation can influence factors stimulating private adaptation as well as adaptation effects through the design and development of the legal, policy and organizational environment as well as the provision of educational, informational, financial, and technical infrastructure. Hence, facilitating existing and new collaborations between private and public actors may enable farmers to adapt effectively to climate change. (C) 2018 Elsevier Ltd. All rights reserved.  
  Address 2018-03-02  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0301-4797 ISBN Medium Article  
  Area Expedition Conference  
  Notes (down) TradeM, ft_macsur Approved no  
  Call Number MA @ admin @ Serial 5192  
Permanent link to this record
 

 
Author Cortignani, R.; Dono, G. doi  openurl
  Title Agricultural policy and climate change: An integrated assessment of the impacts on an agricultural area of Southern Italy Type Journal Article
  Year 2018 Publication Environmental Science and Policy Abbreviated Journal Environ. Sci. Pol.  
  Volume 81 Issue Pages 26-35  
  Keywords Agricultural policy; Climate change; Bio-economic model; Integrated Assessment; Temperature-Humidity Index; Adaptation Pathways; Maximum-Entropy; Model; Cap; Uncertainty; Irrigation; Management; Scenarios; Systems  
  Abstract The European Union (EU) has recently reformed its Common Agricultural Policy (CAP) and, in parallel, has completely abolished the production quotas for milk. These changes will have important consequences for the use of land, of inputs (i.e., water and chemicals) and on the economic performance of rural areas. It is of interest to evaluate the integrated impact of these modifications and of climate change (CC), since the latter could neutralize or reverse some desired effects of the former. For this purpose, this paper evaluates the potential impact of the abolition of milk quotas, as well as of the reform of the first pillar of CAP in two different climate scenarios (present and near future). A bio-economic model simulates the possible adaptation of various farm types in an agricultural area of Southern Italy to these changes, given the available technological options and current market conditions. The main results show that the considered policy changes have small positive impacts on economic and environmental factors of the study area. However, some farm types are more affected. CC can effectively attenuate or reverse several of those effects, especially in some farm types. These results can inform the planning of future changes to the CAP, which will have to act in the context of deeper climate alteration.  
  Address 2018-03-02  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1462-9011 ISBN Medium Article  
  Area Expedition Conference  
  Notes (down) TradeM, ft_macsur Approved no  
  Call Number MA @ admin @ Serial 5193  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: