|   | 
Details
   web
Records
Author Schils, R.; Olesen, J.E.; Kersebaum, K.-C.; Rijk, B.; Oberforster, M.; Kalyada, V.; Khitrykau, M.; Gobin, A.; Kirchev, H.; Manolova, V.; Manolov, I.; Trnka, M.; Hlavinka, P.; Palosuo, T.; Peltonen-Sainio, P.; Jauhiainen, L.; Lorgeou, J.; Marrou, H.; Danalatos, N.; Archontoulis, S.; Fodor, N.; Spink, J.; Roggero, P.P.; Bassu, S.; Pulina, A.; Seehusen, T.; Uhlen, A.K.; Zylowska, K.; Nierobca, A.; Kozyra, J.; Silva, J.V.; Macas, B.M.; Coutinho, J.; Ion, V.; Takac, J.; Ines Minguez, M.; Eckersten, H.; Levy, L.; Herrera, J.M.; Hiltbrunner, J.; Kryvobok, O.; Kryvoshein, O.; Sylvester-Bradley, R.; Kindred, D.; Topp, C.F.E.; Boogaard, H.; de Groot, H.; Lesschen, J.P.; van Bussel, L.; Wolf, J.; Zijlstra, M.; van Loon, M.P.; van Ittersum, M.K.
Title Cereal yield gaps across Europe Type Journal Article
Year 2018 Publication European Journal of Agronomy Abbreviated Journal Europ. J. Agron.
Volume 101 Issue Pages 109-120
Keywords Wheat, Barley, Grain maize, Crop modelling, Yield potential, Nitrogen; Nitrogen Use Efficiency; Sustainable Intensification; Climate-Change; Land-Use; Wheat; Soil; Agriculture; Impacts; Fertility; Emissions
Abstract Europe accounts for around 20% of the global cereal production and is a net exporter of ca. 15% of that production. Increasing global demand for cereals justifies questions as to where and by how much Europe’s production can be increased to meet future global market demands, and how much additional nitrogen (N) crops would require. The latter is important as environmental concern and legislation are equally important as production aims in Europe. Here, we used a country-by-country, bottom-up approach to establish statistical estimates of actual grain yield, and compare these to modelled estimates of potential yields for either irrigated or rainfed conditions. In this way, we identified the yield gaps and the opportunities for increased cereal production for wheat, barley and maize, which represent 90% of the cereals grown in Europe. The combined mean annual yield gap of wheat, barley, maize was 239 Mt, or 42% of the yield potential. The national yield gaps ranged between 10 and 70%, with small gaps in many north-western European countries, and large gaps in eastern and south-western Europe. Yield gaps for rainfed and irrigated maize were consistently lower than those of wheat and barley. If the yield gaps of maize, wheat and barley would be reduced from 42% to 20% of potential yields, this would increase annual cereal production by 128 Mt (39%). Potential for higher cereal production exists predominantly in Eastern Europe, and half of Europe’s potential increase is located in Ukraine, Romania and Poland. Unlocking the identified potential for production growth requires a substantial increase of the crop N uptake of 4.8 Mt. Across Europe, the average N uptake gaps, to achieve 80% of the yield potential, were 87, 77 and 43 kg N ha(-1) for wheat, barley and maize, respectively. Emphasis on increasing the N use efficiency is necessary to minimize the need for additional N inputs. Whether yield gap reduction is desirable and feasible is a matter of balancing Europe’s role in global food security, farm economic objectives and environmental targets.
Address 2019-01-07
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1161-0301 ISBN Medium (up)
Area Expedition Conference
Notes CropM, TradeM, ft_macsur Approved no
Call Number MA @ admin @ Serial 5213
Permanent link to this record
 

 
Author Pulina, A.; Lai, R.; Salis, L.; Seddaiu, G.; Roggero, P.P.; Bellocchi, G.
Title Modelling pasture production and soil temperature, water and carbon fluxes in Mediterranean grassland systems with the Pasture Simulation Model Type Journal Article
Year 2018 Publication Grass and Forage Science Abbreviated Journal Grass Forage Sci.
Volume 73 Issue 2 Pages 272-283
Keywords grassland production; Mediterranean pastures; model calibration; PaSim; sheep grazing systems; soil respiration
Abstract Grasslands play important roles in agricultural production and provide a range of ecosystem services. Modelling can be a valuable adjunct to experimental research in order to improve the knowledge and assess the impact of management practices in grassland systems. In this study, the PaSim model was assessed for its ability to simulate plant biomass production, soil temperature, water content, and total and heterotrophic soil respiration in Mediterranean grasslands. The study site was the extensively managed sheep grazing system at the Berchidda‐Monti Observatory (Sardinia, Italy), from which two data sets were derived for model calibration and validation respectively. A new model parameterization was derived for Mediterranean conditions from a set of eco‐physiological parameters. With the exception of heterotrophic respiration (Rh), for which modelling efficiency (EF) values were negative, the model outputs were in agreement with observations (e.g., EF ranging from ~0.2 for total soil respiration to ~0.7 for soil temperature). These results support the effectiveness of PaSim to simulate C cycle components in Mediterranean grasslands. The study also highlights the need of further model development to provide better representation of the seasonal dynamics of Mediterranean annual species‐rich grasslands and associated peculiar Rh features, for which the modelling is only implicitly being undertaken by the current PaSim release.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium (up) article
Area LiveM Expedition Conference
Notes LiveM, ft_macsur Approved no
Call Number MA @ admin @ Serial 4973
Permanent link to this record
 

 
Author Webber, H.; White, J.W.; Kimball, B.A.; Ewert, F.; Asseng, S.; Rezaei, E.E.; Pinter, P.J., Jr.; Hatfield, J.L.; Reynolds, M.P.; Ababaei, B.; Bindi, M.; Doltra, J.; Ferrise, R.; Kage, H.; Kassie, B.T.; Kersebaum, K.-C.; Luig, A.; Olesen, J.E.; Semenov, M.A.; Stratonovitch, P.; Ratjen, A.M.; LaMorte, R.L.; Leavitt, S.W.; Hunsaker, D.J.; Wall, G.W.; Martre, P.
Title Physical robustness of canopy temperature models for crop heat stress simulation across environments and production conditions Type Journal Article
Year 2018 Publication Field Crops Research Abbreviated Journal Field Crops Research
Volume 216 Issue Pages 75-88
Keywords Heat stress; Crop model improvement; Heat and drought interactions; Climate change impact assessments; Canopy temperature; Wheat; Air CO2 Enrichment; Elevated Carbon-Dioxide; Water-Use Efficiency; Climate-Change; Wheat Evapotranspiration; Stomatal Conductance; Multimodel Ensembles; Farming Systems; Drought-Stress; Spring Wheat
Abstract Despite widespread application in studying climate change impacts, most crop models ignore complex interactions among air temperature, crop and soil water status, CO2 concentration and atmospheric conditions that influence crop canopy temperature. The current study extended previous studies by evaluating Tc simulations from nine crop models at six locations across environmental and production conditions. Each crop model implemented one of an empirical (EMP), an energy balance assuming neutral stability (EBN) or an energy balance correcting for atmospheric stability conditions (EBSC) approach to simulate Tc. Model performance in predicting Tc was evaluated for two experiments in continental North America with various water, nitrogen and CO2 treatments. An empirical model fit to one dataset had the best performance, followed by the EBSC models. Stability conditions explained much of the differences between modeling approaches. More accurate simulation of heat stress will likely require use of energy balance approaches that consider atmospheric stability conditions.
Address 2018-02-19
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0378-4290 ISBN Medium (up) Article
Area Expedition Conference
Notes CropM, ft_macsur Approved no
Call Number MA @ admin @ Serial 5189
Permanent link to this record
 

 
Author Lizaso, J.I.; Ruiz-Rarnos, M.; Rodriguez, L.; Gabaldon-Leal, C.; Oliveira, J.A.; Lorite, I.J.; Sanchez, D.; Garcia, E.; Rodriguez, A.
Title Impact of high temperatures in maize: Phenology and yield components Type Journal Article
Year 2018 Publication Field Crops Research Abbreviated Journal Field Crops Research
Volume 216 Issue Pages 129-140
Keywords Heat stress; Maize; Kernel number; Anthesis, Beta function; Vapor-Pressure Deficit; Heat-Stress; Transpiration Response; Pollen; Viability; Leaf Appearance; Climate-Change; Kernel Number; Grain-Yield; Growth; Plants
Abstract Heat stress is a main threat to current and future global maize production. Adaptation of maize to future warmer conditions requires improving our understanding of crop responses to elevated temperatures. For this purpose, the same short-season (FAO 300) maize hybrid PR37N01 was grown over three years of field experiments on three contrasting Spanish locations in terms of temperature regime. The information complemented three years of greenhouse experiments with the same hybrid, applying heat treatments at various critical moments of the crop cycle. Crop phenology, growth, grain yield, and yield components were monitored. An optimized beta function improved the calculation of thermal time compared to the linear-cutoff estimator with base and optimum temperatures of 8 and 34 degrees C, respectively. Our results showed that warmer temperatures accelerate development rate resulting in shorter vegetative and reproductive phases (ca. 30 days for the whole cycle). Heat stress did not cause silking delay in relation to anthesis (extended anthesis-silking interval), at least in the range of temperatures (maximum temperature up to 42.9 degrees C in the field and up to 52.5 degrees C in the greenhouse) considered in this study. Our results indicated that maize grain yield is reduced under heat stress mainly via pollen viability that in turn determines kernel number, although a smaller but significant effect of the female component has been also detected.
Address 2018-02-19
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0378-4290 ISBN Medium (up) Article
Area Expedition Conference
Notes CropM, ft_macsur Approved no
Call Number MA @ admin @ Serial 5190
Permanent link to this record
 

 
Author Mitter, H.; Schoenhart, M.; Larcher, M.; Schmid, E.
Title The Stimuli-Actions-Effects-Responses (SAER)-framework for exploring perceived relationships between private and public climate change adaptation in agriculture Type Journal Article
Year 2018 Publication Journal of Environmental Management Abbreviated Journal J. Environ. Manage.
Volume 209 Issue Pages 286-300
Keywords Climate change perception; Private adaptation, Public adaptation; Qualitative analysis; Adaptation stimulus; Adaptation effect; Transformational Adaptation; Adapting Agriculture; Farmers Perceptions; Change Scenarios; Decision-Making; Change Impacts; Land-Use; Vulnerability; Framework; Science
Abstract Empirical findings on actors’ roles and responsibilities in the climate change adaptation process are rare even though cooperation between private and public actors is perceived important to foster adaptation in agriculture. We therefore developed the framework SAER (Stimuli-Actions-Effects-Responses) to investigate perceived relationships between private and public climate change adaptation in agriculture at regional scale. In particular, we explore agricultural experts’ perceptions on (i) climatic and non climatic factors stimulating private adaptation, (ii) farm adaption actions, (iii) potential on-farm and off-farm effects from adaptation, and (iv) the relationships between private and public adaptation. The SAER-framework is built on a comprehensive literature review and empirical findings from semi structured interviews with agricultural experts from two case study regions in Austria. We find that private adaptation is perceived as incremental, systemic or transformational. It is typically stimulated by a mix of bio-physical and socio-economic on-farm and off-farm factors. Stimulating factors related to climate change are perceived of highest relevance for systemic and transformational adaptation whereas already implemented adaptation is mostly perceived to be incremental. Perceived effects of private adaptation are related to the environment, weather and climate, quality and quantity of agricultural products as well as human, social and economic resources. Our results also show that public adaptation can influence factors stimulating private adaptation as well as adaptation effects through the design and development of the legal, policy and organizational environment as well as the provision of educational, informational, financial, and technical infrastructure. Hence, facilitating existing and new collaborations between private and public actors may enable farmers to adapt effectively to climate change. (C) 2018 Elsevier Ltd. All rights reserved.
Address 2018-03-02
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0301-4797 ISBN Medium (up) Article
Area Expedition Conference
Notes TradeM, ft_macsur Approved no
Call Number MA @ admin @ Serial 5192
Permanent link to this record