Records |
Author |
Cirillo, V.; Masin, R.; Maggio, A.; Zanin, G. |
Title |
Crop-weed interactions in saline environments |
Type |
Journal Article |
Year |
2018 |
Publication |
European Journal of Agronomy |
Abbreviated Journal |
Europ. J. Agron. |
Volume |
99 |
Issue |
|
Pages |
51-61 |
Keywords |
Salinity; Weeds; Abiotic stress; Crop management; Salt stress; Echinochloa-Crus-Galli; Portulaca Oleracea L.; Seed-Germination; Soil-Salinity; Salt Tolerance; Stress Tolerance; Chenopodium-Album; Chemical-Composition; Southern Australia; Microbial Biomass |
Abstract |
Soil salinization is one of the most critical environmental factors affecting crop yield. It is estimated that 20% of cultivated land and 33% of irrigated agricultural land are affected by salinity. In the last decades, considerable effort to manage saline agro-ecosystems has focused on 1) controlling soil salinity to minimize/reduce the accumulation of salts in the root zone and 2) improving plants ability to cope with osmotic and ionic stress. Less attention has been given to other components of the agro-ecosystem including weed populations, which also react and adapt to soil salinization and indirectly affect plant growth and yield. Weeds represent an increasing challenge for crop systems since they have high genetic resilience and adaptation ability to adverse environmental conditions such as soil salinization. In this review, we assess current knowledge on salinity tolerance of weeds in agricultural contexts and discuss critical components of crop-weed interactions that may increase weeds competitiveness under salinity. Compared to crop species, weeds generally exhibit greater salt tolerance due to high intraspecific variability, associated with diverse physiological adaptation mechanisms (e.g. phenotipic plasticity, seed heteromorphism, allelopathy). Weed competitiveness in saline soils may be enhanced by their earlier emergence, faster growth rates and synergies occurring between soil salts and allelochemicals released by weeds. In the future, a better understanding of crop-weed relationships and molecular, physiological and agronomic stress responses under salinity is essential to design efficient strategies to achieve weed control under altered climatic and environmental conditions. |
Address |
2018-09-20 |
Corporate Author |
|
Thesis |
|
Publisher |
|
Place of Publication |
|
Editor |
|
Language |
English |
Summary Language |
|
Original Title |
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
Series Volume |
|
Series Issue |
|
Edition |
|
ISSN |
1161-0301 |
ISBN |
|
Medium |
|
Area |
|
Expedition |
|
Conference |
|
Notes |
CropM, ft_macsur |
Approved |
no |
Call Number |
MA @ admin @ |
Serial |
5209 |
Permanent link to this record |
|
|
|
Author |
Cortignani, R.; Dono, G. |
Title |
Agricultural policy and climate change: An integrated assessment of the impacts on an agricultural area of Southern Italy |
Type |
Journal Article |
Year |
2018 |
Publication |
Environmental Science and Policy |
Abbreviated Journal |
Environ. Sci. Pol. |
Volume |
81 |
Issue |
|
Pages |
26-35 |
Keywords |
Agricultural policy; Climate change; Bio-economic model; Integrated Assessment; Temperature-Humidity Index; Adaptation Pathways; Maximum-Entropy; Model; Cap; Uncertainty; Irrigation; Management; Scenarios; Systems |
Abstract |
The European Union (EU) has recently reformed its Common Agricultural Policy (CAP) and, in parallel, has completely abolished the production quotas for milk. These changes will have important consequences for the use of land, of inputs (i.e., water and chemicals) and on the economic performance of rural areas. It is of interest to evaluate the integrated impact of these modifications and of climate change (CC), since the latter could neutralize or reverse some desired effects of the former. For this purpose, this paper evaluates the potential impact of the abolition of milk quotas, as well as of the reform of the first pillar of CAP in two different climate scenarios (present and near future). A bio-economic model simulates the possible adaptation of various farm types in an agricultural area of Southern Italy to these changes, given the available technological options and current market conditions. The main results show that the considered policy changes have small positive impacts on economic and environmental factors of the study area. However, some farm types are more affected. CC can effectively attenuate or reverse several of those effects, especially in some farm types. These results can inform the planning of future changes to the CAP, which will have to act in the context of deeper climate alteration. |
Address |
2018-03-02 |
Corporate Author |
|
Thesis |
|
Publisher |
|
Place of Publication |
|
Editor |
|
Language |
English |
Summary Language |
|
Original Title |
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
Series Volume |
|
Series Issue |
|
Edition |
|
ISSN |
1462-9011 |
ISBN |
|
Medium |
Article |
Area |
|
Expedition |
|
Conference |
|
Notes |
TradeM, ft_macsur |
Approved |
no |
Call Number |
MA @ admin @ |
Serial |
5193 |
Permanent link to this record |
|
|
|
Author |
D’Ottavio, P.; Francioni, M.; Trozzo, L.; Sedic, E.; Budimir, K.; Avanzolini, P.; Trombetta, M.F.; Porqueddu, C.; Santilocchi, R.; Toderi, M. |
Title |
Trends and approaches in the analysis of ecosystem services provided by grazing systems: A review |
Type |
Journal Article |
Year |
2018 |
Publication |
Grass and Forage Science |
Abbreviated Journal |
Grass Forage Sci. |
Volume |
73 |
Issue |
1 |
Pages |
15-25 |
Keywords |
climate regulation; food, habitat services; land degradation prevention; moderation of extreme events; natural (landscape) heritage; primary production; regulation of water flows; water quality regulation; Grassland Management; Plant-Communities; Land Degradation; Inner-Mongolia; Trade-Offs; Biodiversity; Provision; Impact; Consequences; Conservation |
Abstract |
The ecosystem services (ES) approach is a framework for describing the benefits of nature to human well-being, and this has become a popular instrument for assessment and evaluation of ecosystems and their functions. Grazing lands can provide a wide array of ES that depend on their management practices and intensity. This article reviews the trends and approaches used in the analysis of some relevant ES provided by grazing systems, in line with the framework principles of the Millennium Ecosystem Assessment (MA). The scientific literature provides reports of many studies on ES in general, but the search here focused on grazing systems, which returned only sixty-two papers. This review of published papers highlights that: (i) in some papers, the concept of ES as defined by the MA is misunderstood (e.g., lack of anthropocentric vision); (ii) 34% of the papers dealt only with one ES, which neglects the need for the multisectoral approach suggested by the MA; (iii) few papers included stakeholder involvement to improve local decision-making processes; (iv) cultural ES have been poorly studied despite being considered the most relevant for local and general stakeholders; and (v) stakeholder awareness of well-being as provided by ES in grazing systems can foster both agri-environmental schemes and the willingness to pay for these services. |
Address |
2018-03-02 |
Corporate Author |
|
Thesis |
|
Publisher |
|
Place of Publication |
|
Editor |
|
Language |
English |
Summary Language |
|
Original Title |
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
Series Volume |
|
Series Issue |
|
Edition |
|
ISSN |
0142-5242 |
ISBN |
|
Medium |
Review |
Area |
|
Expedition |
|
Conference |
|
Notes |
LiveM, ft_macsur |
Approved |
no |
Call Number |
MA @ admin @ |
Serial |
5191 |
Permanent link to this record |
|
|
|
Author |
Fan, F.; Henriksen, C.B.; Porter, J. |
Title |
Long-term effects of conversion to organic farming on ecosystem services – a model simulation case study and on-farm case study in Denmark |
Type |
Journal Article |
Year |
2018 |
Publication |
Agroecology and Sustainable Food Systems |
Abbreviated Journal |
Agroecology and Sustainable Food Systems |
Volume |
42 |
Issue |
5 |
Pages |
504-529 |
Keywords |
Long-term; conversion; economic value; ecosystem services; organic farming; agricultural policytrade-offs; Greenhouse-Gas Emissions; Former Arable Soils; Daisy Model; Crop; Production; Conventional Agriculture; Straw Incorporation; Production; Systems; Nitrogen Dynamics; Climate-Change; Water-Balance |
Abstract |
Organic agriculture aims to produce food while establishing an ecological balance to augment ecosystem services (ES) and has been rapidly expanding in the world since the 1980s. Recently, however, in several European countries, including Denmark, organic farmers have converted back to conventional farming. Hence, understanding how agricultural ES are affected by the number of years since conversion to organic farming is imperative for policy makers to guide future agricultural policy. In order to investigate the long-term effects of conversion to organic farming on ES we performed i) a model simulation case study by applying the Daisy model to simulate 14 different conversion scenarios for a Danish farm during a 65 year period with increasing number of years under organic farming, and ii) an on-farm case study in Denmark with one conventional farm, one organic farm under conversion, and three organic farms converted 10, 15 and 58 years ago, respectively. Both the model simulation case study and the on-farm case study showed that non-marketable ES values increased with increasing number of years under organic farming. Trade-offs between marketable and non-marketable ES were not evident, since also marketable ES values generally showed an increasing trend, except when the price difference between organic and conventional products in the model simulation study was the smallest, and when an alfalfa pre-crop in the on-farm case study resulted in a significantly higher level of plant available nitrogen, which boosted the yield and the associated marketable ES of the subsequent winter rye crop. These results indicate a possible benefit of preserving long-term organic farms and could be used to argue for agricultural policy interventions to offset further reduction in the number of organic farms or the land area under organic farming. |
Address |
2018-05-03 |
Corporate Author |
|
Thesis |
|
Publisher |
|
Place of Publication |
|
Editor |
|
Language |
English |
Summary Language |
|
Original Title |
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
Series Volume |
|
Series Issue |
|
Edition |
|
ISSN |
2168-3565 |
ISBN |
|
Medium |
|
Area |
|
Expedition |
|
Conference |
|
Notes |
CropM, ft_macsur |
Approved |
no |
Call Number |
MA @ admin @ |
Serial |
5198 |
Permanent link to this record |
|
|
|
Author |
Fan, F.; Henriksen, C.B.; Porter, J. |
Title |
Relationship between stoichiometry and ecosystem services: A case study of it organic farming systems |
Type |
Journal Article |
Year |
2018 |
Publication |
Ecological Indicators |
Abbreviated Journal |
Ecological Indicators |
Volume |
85 |
Issue |
|
Pages |
400-408 |
Keywords |
Ecosystem services; Organic farming; Stoichiometry; Field practices; Soil Carbon Storage; Ecological Stoichiometry; Agricultural Management; Earthworm Populations; Nitrogen-Fixation; Cropping Systems; New-Zealand; Quantification; Valuation; Matter |
Abstract |
Over the past five decades, the delivery of global Ecosystem Services (ES) has diminished and this has been driven partly by anthropogenic activities. Agro-ecosystems cover almost 40% of the terrestrial surface on Earth, and have been considered as one of the most significant ecological experiments with a potential to both contribute to and mitigate global ES loss. In the present study, six different ES (food and fodder production, carbon sequestration, biological pest control, soil water storage, nitrogen regulation and soil formation) were quantified in various organic farming systems and the hypothesis that there is a link between these ES and C:N, C:O and H:O stoichiometric ratios in farming systems was experimentally tested. The results show that different ES are correlated with the stoichiometric ratios to different extents. There are significant positive linear correlations between C:N stoichiometric ratios and all measured ES in the investigated organic farming systems, while not all the ES are correlated with the C:O and H:O ratios. This study has expanded the horizons of stoichiometry by linking a fundamental chemical property of molecules with an emergent property of organic farming systems, namely their ecosystem service provision. |
Address |
2018-06-07 |
Corporate Author |
|
Thesis |
|
Publisher |
|
Place of Publication |
|
Editor |
|
Language |
English |
Summary Language |
|
Original Title |
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
Series Volume |
|
Series Issue |
|
Edition |
|
ISSN |
1470-160x |
ISBN |
|
Medium |
|
Area |
|
Expedition |
|
Conference |
|
Notes |
CropM, ft_macsur |
Approved |
no |
Call Number |
MA @ admin @ |
Serial |
5201 |
Permanent link to this record |