|   | 
Details
   web
Records
Author Olesen, J.E.; Niemeyer, S.; Ceglar, A.; Roggero, P.-P.; Lehtonen, H.; Schönhart, M.; Kipling, R.
Title Section 5.3. Agriculture Type Book Chapter
Year 2017 Publication Abbreviated Journal
Volume (up) Issue Pages 223-243
Keywords
Abstract
Address
Corporate Author Thesis
Publisher European Environmental Agency Place of Publication Copenhagen, Denmark Editor
Language Summary Language Original Title
Series Editor Series Title Climate change, impacts and vulnerability in Europe 2016. An indicator-based report Abbreviated Series Title
Series Volume EEA Report (1/2017) Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes CropM, LiveM, TradeM Approved no
Call Number MA @ admin @ Serial 4964
Permanent link to this record
 

 
Author Tomozeiu, R.; Pasqui, M.; Quaresima, S.
Title Future changes of air temperature over Italian agricultural areas: a statistical downscaling technique applied to 2021–2050 and 2071–2100 periods Type Journal Article
Year 2017 Publication Meteorology and Atmospheric Physics Abbreviated Journal Meteorology and Atmospheric Physics
Volume (up) in press Issue Pages
Keywords
Abstract Climate change scenarios of seasonal minimum and maximum temperature over different Italian agricultural areas, during the periods 2021–2050 and 2071–2100 against 1961–1990, are assessed. The areas are those selected in the framework of the Agroscenari project and are represented by: Padano–Veneta plain, Marche, Beneventano, Destra Sele, Oristano, Puglia and Sicilia, all areas of prominent agricultural vocation with excellence productions. A statistical downscaling technique applied to ENSEMBLES global climate simulations, emission scenario A1B, is used to achieve this objective. The statistical scheme consists of a multivariate regression based on Canonical Correlation Analysis. The scheme is constructed using large-scale fields derived from ECMWF reanalysis and seasonal mean minimum, maximum temperature derived from national observed daily gridded data that cover 1959–2008 period. Once the most skillful model has been selected for each season and variable, this is then applied to GCMs of ENSEMBLES runs. The statistical downscaling method developed reveals good skill over the case studies of the present work, underlying the possibility to apply the scheme over whole Italian peninsula. In addition, the results emphasize that the temperature at 850 hPa is the best predictor for surface air temperature. The future projections show that an increase could be expected to occur under A1B scenario conditions in all seasons, both in minimum and maximum temperatures. The projected increases are about 2 °C during 2021–2050 and between 2.5 and 4.5 °C during 2071–2100, respect to 1961–1990. The spatial distribution of warming is projected to be quite uniform over the territory to the end of the century, while some spatial differences are noted over 2021–2050 period. For example, the increase in minimum temperature is projected to be slightly higher in areas from northern and central part than those situated in the southern part of Italian peninsula, during 2021–2050 period. The peak of changes is projected to appear during summer season, for both minimum and maximum temperature. The probability density function tends to shift to warmer values during both periods, with increases more intense during summer and to the end of the century, when the lower tail is projected to shift up to 3 °C and the upper tail up to 6 °C. All these projected changes have important impacts on viticulture, intensive fruit and tomatoes, some of the main agricultural systems analyzed in the Agroscenari project.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0177-7971 ISBN Medium
Area CropM Expedition Conference
Notes CropM, ft_macsur Approved no
Call Number MA @ admin @ Serial 4970
Permanent link to this record
 

 
Author Hoffmann, M.P.; Haakana, M.; Asseng, S.; Höhn, J.G.; Palosuo, T.; Ruiz-Ramos, M.; Fronzek, S.; Ewert, F.; Gaiser, T.; Kassie, B.T.; Paff, K.; Rezaei, E.E.; Rodríguez, A.; Semenov, M.; Srivastava, A.K.; Stratonovitch, P.; Tao, F.; Chen, Y.; Rötter, R.P.
Title How does inter-annual variability of attainable yield affect the magnitude of yield gaps for wheat and maize? An analysis at ten sites Type Journal Article
Year 2017 Publication Agricultural Systems Abbreviated Journal Agric. Syst.
Volume (up) Issue Pages in press
Keywords
Abstract Highlights • The larger simulated attainable yield for a specific crop season, the larger the yield gap. • Average size of the yield gap is not affected by the inter-annual variability of attainable yield. • Technology levels (resource input and accessibility) determine average yield gap. • To reduce yield gaps in rainfed environments, farmers need to improve season-specific crop management. Abstract Provision of food security in the face of increasing global food demand requires narrowing of the gap between actual farmer’s yield and maximum attainable yield. So far, assessments of yield gaps have focused on average yield over 5–10 years, but yield gaps can vary substantially between crop seasons. In this study we hypothesized that climate-induced inter-annual yield variability and associated risk is a major barrier for farmers to invest, i.e. increase inputs to narrow the yield gap. We evaluated the importance of inter-annual attainable yield variability for the magnitude of the yield gap by utilizing data for wheat and maize at ten sites representing some major food production systems and a large range of climate and soil conditions across the world. Yield gaps were derived from the difference of simulated attainable yields and regional recorded farmer yields for 1981 to 2010. The size of the yield gap did not correlate with the amplitude of attainable yield variability at a site, but was rather associated with the level of available resources such as labor, fertilizer and plant protection inputs. For the sites in Africa, recorded yield reached only 20% of the attainable yield, while for European, Asian and North American sites it was 56–84%. Most sites showed that the higher the attainable yield of a specific season the larger was the yield gap. This significant relationship indicated that farmers were not able to take advantage of favorable seasonal weather conditions. To reduce yield gaps in the different environments, reliable seasonal weather forecasts would be required to allow farmers to manage each seasonal potential, i.e. overcoming season-specific yield limitations.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0308521x ISBN Medium
Area CropM Expedition Conference
Notes CropM, ft_macsur Approved no
Call Number MA @ admin @ Serial 4985
Permanent link to this record
 

 
Author Gabaldón-Leal, C.; Ruiz-Ramos, M.; de la Rosa, R.; León, L.; Belaj, A.; Rodríguez, A.; Santos, C.; Lorite, I.J.
Title Impact of changes in mean and extreme temperatures caused by climate change on olive flowering in southern Spain: IMPACT OF CLIMATE CHANGE ON OLIVE FLOWERING IN SOUTHERN SPAIN Type Journal Article
Year 2017 Publication International Journal of Climatology Abbreviated Journal Int. J. Climatol.
Volume (up) Issue Pages 867
Keywords
Abstract Due to the severe increase projected in future temperatures and the great economic and social importance of olive growing for vast agricultural areas in the Mediterranean Basin, accurate climate change impact assessment on olive orchards is required. The aim of this study is to assess the flowering date and the impact of mean and extreme temperature events on olive flowering in southern Spain under baseline and future climate conditions. To that end, experimental data were obtained from ten olive genotypes: six well-known olive cultivars in the region, one cultivar, ‘Chiquitita’, obtained via conventional breeding, and three wild olives from the Canary Islands. A site-specific model calibration was conducted resulting in satisfactory performance with an average error of 2 days for flowering date estimation under baseline and future climate conditions, and a RMSE equal to 5.5 days in the validation process. The outputs from 12 regional climate models from the ENSEMBLES European project with a bias correction in temperature and precipitation were used. Results showed an advance in the olive flowering dates of about 17 days at the end of the 21st century compared with the baseline period (1981–2010), and an increase in the frequency of extreme events around the flowering period. A spatial analysis of results identified the areas in southern Spain that are most vulnerable to climate change impact caused by the lack of chilling hours accumulation (areas located on the Atlantic coast and the south-eastern coast) and by the occurrence of high temperatures during the flowering period (areas located in the north and north-eastern areas of the Andalusian region).
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0899-8418 ISBN Medium
Area Expedition Conference
Notes CropM, ft_macsur Approved no
Call Number MA @ admin @ Serial 4994
Permanent link to this record
 

 
Author Sharif, B.
Title Data mining techniques for quantifying and projecting crop yield responses to climate change Type Book Whole
Year 2017 Publication Abbreviated Journal
Volume (up) Issue Pages
Keywords
Abstract
Address
Corporate Author Thesis Ph.D. thesis
Publisher Aarhus University Place of Publication Aarhus Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title PhD
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes CropM Approved no
Call Number MA @ admin @ Serial 5165
Permanent link to this record