|   | 
Details
   web
Records
Author Zhai, R.; Tao, F.
Title Contributions of climate change and human activities to runoff change in seven typical catchments across China Type Journal Article
Year 2017 Publication Science of the Total Environment Abbreviated Journal Sci. Tot. Environ.
Volume (down) 605 Issue Pages 219-229
Keywords Catchments; Detection; Attribution; Runoff; VIC; Water resource; Weihe River-Basin; Hydrologic Response; Temporal-Changes; Loess Plateau; United-States; Yellow-River; Streamflow; Impacts; Variability; Model
Abstract Climate change and human activities are two major factors affecting water resource change. It is important to understand the roles of the major factors in affecting runoff change in different basins for watershed management. Here, we investigated the trends in climate and runoff in seven typical catchments in seven basins across China from 1961 to 2014. Then we attributed the runoff change to climate change and human activities in each catchment and in three time periods (1980s, 1990s and 2000s), using the VIC model and long-term runoff observation data. During 1961-2014, temperature increased significantly, while the trends in precipitation were insignificant in most of the catchments and inconsistent among the catchments. The runoff in most of the catchments showed a decreasing trend except the Yingluoxia catchment in the northwestern China. The contributions of climate change and human activities to runoff change varied in different catchments and time periods. In the 1980s, climate change contributed more to runoff change than human activities, which was 84%, 59%,-66%,-50%, 59%, 94%, and -59% in the Nianzishan, Yingluoxia, Xiahui, Yangjiaping, Sanjiangkou, Xixian, and Changle catchment, respectively. After that, human activities had played a more essential role in runoff change. In the 1990s and 2000s, human activities contributed more to runoff change than in the 1980s. The contribution by human activities accounted for 84%,- 68%, and 67% in the Yingluoxia, Xiahui, and Sanjiangkou catchment, respectively, in the 1990s; and -96%,-67%,-94%, and -142% in the Nianzishan, Yangjiaping, Xixian, and Changle catchment, respectively, in the 2000s. It is also noted that after 2000 human activities caused decrease in runoff in all catchments except the Yingluoxia. Our findings highlight that the effects of human activities, such as increase in water withdrawal, land use/cover change, operation of dams and reservoirs, should be well managed. (C) 2017 Elsevier B.V. All rights reserved.
Address 2017-09-14
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0048-9697 ISBN Medium Article
Area Expedition Conference
Notes CropM, ft_macsur Approved no
Call Number MA @ admin @ Serial 5177
Permanent link to this record
 

 
Author Heinschink, K.; Sinabell, F.; Url, T.
Title Elements of an Index-based Margin Insurance. An Application to Wheat Production in Austria Type Report
Year 2017 Publication WIFO Working Papers Abbreviated Journal
Volume (down) 536 Issue Pages 16
Keywords
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes TradeM Approved no
Call Number MA @ admin @ Serial 5016
Permanent link to this record
 

 
Author Klosterhalfen, A.; Herbst, M.; Weihermueller, L.; Graf, A.; Schmidt, M.; Stadler, A.; Schneider, K.; Subke, J.-A.; Huisman, J.A.; Vereecken, H.
Title Multi-site calibration and validation of a net ecosystem carbon exchange model for croplands Type Journal Article
Year 2017 Publication Ecological Modelling Abbreviated Journal Ecol. Model.
Volume (down) 363 Issue Pages 137-156
Keywords AgroC; Soil respiration; Carbon balance; Winter wheat; Grassland; NEE; LOLIUM-PERENNE L; SOIL HETEROTROPHIC RESPIRATION; LAND-SURFACE MODELS; EDDY-COVARIANCE; WINTER-WHEAT; CARBOHYDRATE CONTENT; TURNOVER MODEL; ROTHC MODEL; ROOT RATIOS; CO2 EFFLUX
Abstract Croplands play an important role in the carbon budget of many regions. However, the estimation of their carbon balance remains difficult due to diversity and complexity of the processes involved. We report the coupling of a one-dimensional soil water, heat, and CO2 flux model (SOILCO2), a pool concept of soil carbon turnover (RothC), and a crop growth module (SUCROS) to predict the net ecosystem exchange (NEE) of carbon. The coupled model, further referred to as AgroC, was extended with routines for managed grassland as well as for root exudation and root decay. In a first step, the coupled model was applied to two winter wheat sites and one upland grassland site in Germany. The model was calibrated based on soil water content, soil temperature, biometric, and soil respiration measurements for each site, and validated in terms of hourly NEE measured with the eddy covariance technique. The overall model performance of AgroC was sufficient with a model efficiency above 0.78 and a correlation coefficient above 0.91 for NEE. In a second step, AgroC was optimized with eddy covariance NEE measurements to examine the effect of different objective functions, constraints, and data-transformations on estimated NEE. It was found that NEE showed a distinct sensitivity to the choice of objective function and the inclusion of soil respiration data in the optimization process. In particular, both positive and negative day- and nighttime fluxes were found to be sensitive to the selected optimization strategy. Additional consideration of soil respiration measurements improved the simulation of small positive fluxes remarkably. Even though the model performance of the selected optimization strategies did not diverge substantially, the resulting cumulative NEE over simulation time period differed substantially. Therefore, it is concluded that data transformations, definitions of objective functions, and data sources have to be considered cautiously when a terrestrial ecosystem model is used to determine NEE by means of eddy covariance measurements. (C) 2017 Elsevier B.V. All rights reserved.
Address 2017-11-09
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0304-3800 ISBN Medium
Area Expedition Conference
Notes CropM, ft_MACSUR Approved no
Call Number MA @ admin @ Serial 5216
Permanent link to this record
 

 
Author Hjelkrem, A.-G.R.; Höglind, M.; van Oijen, M.; Schellberg, J.; Gaiser, T.; Ewert, F.
Title Sensitivity analysis and Bayesian calibration for testing robustness of the BASGRA model in different environments Type Journal Article
Year 2017 Publication Ecological Modelling Abbreviated Journal Ecol. Model.
Volume (down) 359 Issue Pages 80-91
Keywords Metropolis-hasting; Morris method; Reducing complexity; Robustness
Abstract Highlights • The parameters to be fixed were consistent across sites. • Model calibration must be performed separately for each specific case. • Possible to reduce model parameters from 66 to 45. • Strong model reductions must be avoided. • The error term for the training data were characterised by timing (phase shift). Abstract Proper parameterisation and quantification of model uncertainty are two essential tasks in improvement and assessment of model performance. Bayesian calibration is a method that combines both tasks by quantifying probability distributions for model parameters and outputs. However, the method is rarely applied to complex models because of its high computational demand when used with high-dimensional parameter spaces. We therefore combined Bayesian calibration with sensitivity analysis, using the screening method by Morris (1991), in order to reduce model complexity by fixing parameters to which model output was only weakly sensitive to a nominal value. Further, the robustness of the model with respect to reduction in the number of free parameters were examined according to model discrepancy and output uncertainty. The process-based grassland model BASGRA was examined in the present study on two sites in Norway and in Germany, for two grass species (Phleum pratense and Arrhenatherum elatius). According to this study, a reduction of free model parameters from 66 to 45 was possible. The sensitivity analysis showed that the parameters to be fixed were consistent across sites (which differed in climate and soil conditions), while model calibration had to be performed separately for each combination of site and species. The output uncertainty decreased slightly, but still covered the field observations of aboveground biomass. Considering the training data, the mean square error for both the 66 and the 45 parameter model was dominated by errors in timing (phase shift), whereas no general pattern was found in errors when using the validation data. Stronger model reduction should be avoided, as the error term increased and output uncertainty was underestimated.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0304-3800 ISBN Medium
Area Expedition Conference
Notes CropM, LiveM, ft_macsur Approved no
Call Number MA @ admin @ Serial 5010
Permanent link to this record
 

 
Author Tao, F.; Xiao, D.; Zhang, S.; Zhang, Z.; Roetter, R.P.
Title Wheat yield benefited from increases in minimum temperature in the Huang-Huai-Hai Plain of China in the past three decades Type Journal Article
Year 2017 Publication Agricultural and Forest Meteorology Abbreviated Journal Agricultural and Forest Meteorology
Volume (down) 239 Issue Pages 1-14
Keywords Agriculture, Climate change, Crop yield, Impact and adaptation, Heat stress, Phenology; Climate-Change; Winter-Wheat; North China; Triticum-Aestivum; Crop; Production; Grain-Growth; Impacts; Trends; Heat; Management
Abstract Our understanding of climate impacts and adaptations on crop growth and productivity can be accelerated by analyzing historical data over the past few decades. We used crop trial and climate data from 1981 to 2009 at 34 national agro-meteorological stations in the Huang-Huai-Hai Plain (HHHP) of China to investigate the impacts of climate factors during different growth stages on the growth and yields of winter wheat, accounting for the adaptations such as shifts in sowing dates, cultivars, and agronomic management. Maximum (T-max) and minimum temperature (T-min) during the growth period of winter wheat increased significantly, by 0.4 and 0.6 degrees C/decade, respectively, from 1981 to 2009, while solar radiation decreased significantly by 0.2 MJ/m(2)/day and precipitation did not change significantly. The trends in climate shifted wheat phenology significantly at 21 stations and affected wheat yields significantly at five stations. The impacts of T-max and T-min differed in different growth stages of winter wheat. Across the stations, during 1981-2009, wheat yields increased on average by 14.5% with increasing trends in T-min over the whole growth period, which reduced frost damage, however, decreased by 3.0% with the decreasing trends in solar radiation. Trends in Tmax and precipitation had comparatively smaller impacts on wheat yields. From 1981 to 2009, climate trends were associated with a <= 30% (or <= 1.0% per year) wheat yield increase at 23 stations in eastern and southern parts of HHHP; however with a <= 30% (or <= 1.0% per year) reduction at 11 other stations, mainly in western part of HHHP. We also found that wheat reproductive growth duration increased due to shifts in cultivars and flowering date, and the duration was significantly and positively correlated with wheat yield. This study highlights the different impacts of T-max and T-min in different growth stages of winter wheat, as well as the importance of management (e.g. shift of sowing date) and cultivars shift in adapting to climate change in the major wheat production region. (C) 2017 Elsevier B.V. All rights reserved.
Address 2017-06-12
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0168-1923 ISBN Medium article
Area Expedition Conference
Notes CropM, ft_macsur Approved no
Call Number MA @ admin @ Serial 4962
Permanent link to this record