toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links (down)
Author Kersebaum, K.-C.; Wallor, E.; Ventrella, D.; Cammarano, D.; Choucheney, E.; Ewert, F.; Ferrise, R.; Gaiser, T.; Garofalo, P.; Giglio, L.; Giola, P.; Hoffmann, M.; Laan, M.; Lewan, E.; Maharjan, G.R.; Moriondo, M.; Mula, L.; Nendel, C.; Pohankova, E.; Roggero, P.P.; Trnka, M.; Trombi, G. url  openurl
  Title Comparison of site sensitivity of crop models using spatially variable field data from Precision Agriculture Type Report
  Year 2017 Publication FACCE MACSUR Reports Abbreviated Journal  
  Volume 10 Issue Pages C1.1-D2  
  Keywords  
  Abstract Site conditions and soil properties have a strong influence on impacts of climate change on crop production. Vulnerability of crop production to changing climate conditions is highly determined by the ability of the site to buffer periods of adverse climatic situations like water scarcity or excessive rainfall.  Therefore, the capability of models to reflect crop responses and water and nutrient dynamics under different site conditions is essential to assess climate impact even on a regional scale. To test and improve sensitivity of models to various site properties such as soil variability and hydrological boundary conditions, spatial variable data sets from precision farming of two fields in Germany and Italy were provided to modellers. For the German 20 ha field soil and management data for 60 grid points for 3 years (2 years wheat, 1 year triticale) were provided. For the Italian field (12 ha) information for 100 grid points were available for three growing seasons of durum wheat. Modellers were asked to run their models using a) the model specific procedure to estimate soil hydraulic properties from texture using their standard procedure and use in step b) fixed values for field capacity and wilting point derived from soil taxonomy. Only the phenology and crop yield of one grid point provided for a basic calibration. In step c) information for all grid points of the first year (yield, soil water and mineral N content for Germany, yield, biomass and LAI for Italy) were provided. First results of five out of twelve participating models are compared against measured state variables analysing their site specific response and consistency across crop and soil variables. (Main text to be published in a peer-reviewed journal)  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium Abstract  
  Area Expedition Conference  
  Notes CropM Approved no  
  Call Number MA @ admin @ Serial 4951  
Permanent link to this record
 

 
Author Houska, T.; Kraft, P.; Liebermann, R.; Klatt, S.; Kraus, D.; Haas, E.; Santabarbara, I.; Kiese, R.; Butterbach-Bahl, K.; Müller, C.; Breuer, L. url  doi
openurl 
  Title Rejecting hydro-biogeochemical model structures by multi-criteria evaluation Type Journal Article
  Year 2017 Publication Environmental Modelling & Software Abbreviated Journal Env. Model. Softw.  
  Volume 93 Issue Pages 1-12  
  Keywords  
  Abstract Highlights • New method to investigate biogeochemical model structure performance. • Process based hydrological modelling can improve biogeochemical model predictions. • Modelling efficiency dramatically drops with multiple objectives. Abstract This work presents a novel way for assessing and comparing different hydro-biogeochemical model structures and their performances. We used the LandscapeDNDC modelling framework to set up four models of different complexity, considering two soil-biogeochemical and two hydrological modules. The performance of each model combination was assessed using long-term (8 years) data and applying different thresholds, considering multiple criteria and objective functions. Our results show that each model combination had its strength for particular criteria. However, only 0.01% of all model runs passed the complete rejectionist framework. In contrast, our comparatively applied assessments of single thresholds, as frequently used in other studies, lead to a much higher acceptance rate of 40–70%. Therefore, our study indicates that models can be right for the wrong reasons, i.e., matching GHG emissions while at the same time failing to simulate other criteria such as soil moisture or plant biomass dynamics.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1364-8152 ISBN Medium  
  Area Expedition Conference  
  Notes CropM, ft_macsur Approved no  
  Call Number MA @ admin @ Serial 4983  
Permanent link to this record
 

 
Author Van Oijen, M.; Cameron, D.; Levy, P.E.; Preston, R. url  doi
openurl 
  Title Correcting errors from spatial upscaling of nonlinear greenhouse gas flux models Type Journal Article
  Year 2017 Publication Environmental Modelling & Software Abbreviated Journal Environmental Modelling & Software  
  Volume 94 Issue Pages 157-165  
  Keywords  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1364-8152 ISBN Medium article  
  Area Expedition Conference  
  Notes CropM, ft_macsur Approved no  
  Call Number MA @ admin @ Serial 4945  
Permanent link to this record
 

 
Author Sharif, B.; Makowski, D.; Plauborg, F.; Olesen, J.E. url  doi
openurl 
  Title Comparison of regression techniques to predict response of oilseed rape yield to variation in climatic conditions in Denmark Type Journal Article
  Year 2017 Publication European Journal of Agronomy Abbreviated Journal Europ. J. Agron.  
  Volume 82 Issue Pages 11-20  
  Keywords Winter oilseed rape; Statistical models; Yield; Climate; Regression  
  Abstract Highlights • Regularization techniques for regression outperformed the classical regression techniques in predicting crop yields. • Different regression techniques with similar prediction accuracy showed different responses of major climatic variables to crop yield. • The regression models showed some responses of crop yield to climatic conditions that is mostly absent in process based crop models. Abstract Statistical regression models represent alternatives to process-based dynamic models for predicting the response of crop yields to variation in climatic conditions. Regression models can be used to quantify the effect of change in temperature and precipitation on yields. However, it is difficult to identify the most relevant input variables that should be included in regression models due to the high number of candidate variables and to their correlations. This paper compares several regression techniques for modeling response of winter oilseed rape yield to a high number of correlated input variables. Several statistical regression methods were fitted to a dataset including 689 observations of winter oilseed rape yield from replicated field experiments conducted in 239 sites in Denmark, covering nearly all regions of the country from 1992 to 2013. Regression methods were compared by cross-validation. The regression methods leading to the most accurate yield predictions were Lasso and Elastic Net, and the least accurate methods were ordinary least squares and stepwise regression. Partial least squares and ridge regression methods gave intermediate results. The estimated relative yield change for a +1°C temperature increase during flowering was estimated to range between 0 and +6 %, depending on choice of regression method. Precipitation was found to have an adverse effect on yield during autumn and winter. It was estimated that an increase in precipitation of +1 mm/day would result in a relative yield change ranging from 0 to −4 %. Soil type was also important for crop yields with lower yields on sandy soils compared to loamy soils. Later sowing was found to result in increased crop yield. The estimated effect of climate on yield was highly sensitive to the chosen regression method. Regression models showing similar performance led in some cases to different conclusions with respect to effect of temperature and precipitation. Hence, it is recommended to apply an ensemble of regression models, in order to account for the sensitivity of the data driven models for projecting crop yield under climate change.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1161-0301 ISBN Medium article  
  Area Expedition Conference  
  Notes CropM, ft_macsur Approved no  
  Call Number MA @ admin @ Serial 4966  
Permanent link to this record
 

 
Author Popp, A.; Calvin, K.; Fujimori, S.; Havlik, P.; Humpenöder, F.; Stehfest, E.; Bodirsky, B.L.; Dietrich, J.P.; Doelmann, J.C.; Gusti, M.; Hasegawa, T.; Kyle, P.; Obersteiner, M.; Tabeau, A.; Takahashi, K.; Valin, H.; Waldhoff, S.; Weindl, I.; Wise, M.; Kriegler, E.; Lotze-Campen, H.; Fricko, O.; Riahi, K.; Vuuren, D.P. van url  doi
openurl 
  Title Land-use futures in the shared socio-economic pathways Type Journal Article
  Year 2017 Publication Global Environmental Change Abbreviated Journal Glob. Environ. Change  
  Volume 42 Issue Pages 331-345  
  Keywords Scenarios; Land use; Emissions; Mitigation; Food prices; Integrated assessment; SSP  
  Abstract • Narratives for the Shared Socio-Economic Pathways (SSPs) focusing on the land sector are presented. • Integrated Assessment Models have been applied for the SSPs to assess potential future developments for land use, greenhouse gas emissions, food provision and prices. • Model results reflect the general storylines of the SSPs and indicate a broad range of potential land-use futures. • SSP-based land use pathways aim at supporting future climate research, climate impact analysis, biodiversity research and sustainability science. Abstract In the future, the land system will be facing new intersecting challenges. While food demand, especially for resource-intensive livestock based commodities, is expected to increase, the terrestrial system has large potentials for climate change mitigation through improved agricultural management, providing biomass for bioenergy, and conserving or even enhancing carbon stocks of ecosystems. However, uncertainties in future socio-economic land use drivers may result in very different land-use dynamics and consequences for land-based ecosystem services. This is the first study with a systematic interpretation of the Shared Socio-Economic Pathways (SSPs) in terms of possible land-use changes and their consequences for the agricultural system, food provision and prices as well as greenhouse gas emissions. Therefore, five alternative Integrated Assessment Models with distinctive land-use modules have been used for the translation of the SSP narratives into quantitative projections. The model results reflect the general storylines of the SSPs and indicate a broad range of potential land-use futures with global agricultural land of 4900 mio ha in 2005 decreasing by 743 mio ha until 2100 at the lower (SSP1) and increasing by 1080 mio ha (SSP3) at the upper end. Greenhouse gas emissions from land use and land use change, as a direct outcome of these diverse land-use dynamics, and agricultural production systems differ strongly across SSPs (e.g. cumulative land use change emissions between 2005 and 2100 range from −54 to 402 Gt CO2). The inclusion of land-based mitigation efforts, particularly those in the most ambitious mitigation scenarios, further broadens the range of potential land futures and can strongly affect greenhouse gas dynamics and food prices. In general, it can be concluded that low demand for agricultural commodities, rapid growth in agricultural productivity and globalized trade, all most pronounced in a SSP1 world, have the potential to enhance the extent of natural ecosystems, lead to lowest greenhouse gas emissions from the land system and decrease food prices over time. The SSP-based land use pathways presented in this paper aim at supporting future climate research and provide the basis for further regional integrated assessments, biodiversity research and climate impact analysis.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0959-3780 ISBN Medium  
  Area Expedition Conference  
  Notes TradeM, ftnotmacsur Approved no  
  Call Number MA @ admin @ Serial 5006  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: