toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links (down)
Author Olesen, J.E.; Niemeyer, S.; Ceglar, A.; Roggero, P.-P.; Lehtonen, H.; Schönhart, M.; Kipling, R. url  doi
openurl 
  Title Section 5.3. Agriculture Type Book Chapter
  Year 2017 Publication Abbreviated Journal  
  Volume Issue Pages 223-243  
  Keywords  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher European Environmental Agency Place of Publication Copenhagen, Denmark Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Climate change, impacts and vulnerability in Europe 2016. An indicator-based report Abbreviated Series Title  
  Series Volume EEA Report (1/2017) Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes CropM, LiveM, TradeM Approved no  
  Call Number MA @ admin @ Serial 4964  
Permanent link to this record
 

 
Author Persson, T.; Kværnø, S. url  doi
openurl 
  Title Impact of projected mid-21st century climate and soil extrapolation on simulated spring wheat grain yield in Southeastern Norway Type Journal Article
  Year 2017 Publication Journal of Agricultural Science Abbreviated Journal J. Agric. Sci.  
  Volume 155 Issue 03 Pages 361-377  
  Keywords  
  Abstract The effects of soil variability on regional crop yield under projected climate change are largely unknown. In Southeastern Norway, increased temperature and precipitation are projected for the mid-21st century. Crop simulation models in combination with scaling techniques can be used to determine the regional pattern of crop yield. In the present paper, the CSM-CROPSIM-CERES-Wheat model was applied to simulate regional spring wheat yield for Akershus and Østfold counties in Southeastern Norway. Prior to the simulations, parameters in the CSM-CROPSIM-CERES-Wheat model were calibrated for the spring wheat cvars Zebra, Demonstrant and Bjarne, using cultivar trial data from Southeastern Norway and site-specific weather and soil information. Weather input data for regional yield simulations represented the climate in 1961–1990 and projections of the climate in 2046–2065. The latter were based on four Global Climate Models and greenhouse gas emission scenario A1B in the IPCC 4th Assessment Report. Data on regional soil particle size distribution, water-holding characteristics and organic matter data were obtained from a database. To determine the simulated grain yield sensitivity to soil input, the number of soil profiles used to describe the soilscape in the region varied from 76 to 16, 5 and 1. The soils in the different descriptions were selected by arranging them into groups according to similarities in physical characteristics and taking the soil in each group occupying the largest area in the region to represent other soils in that group. The simulated grain yields were higher under all four projected future climate scenarios than the corresponding average yields in the baseline conditions. On average across the region, there were mostly non-significant differences in grain yield between the soil extrapolations for all cultivars and climate projections. However, for sub-regions grain yield varied by up to 20% between soil extrapolations. These results indicate how projected climate change could affect spring wheat yield given the assumed simulated conditions for a region with similar climate and soil conditions to many other cereal production regions in Northern Europe. The results also provide useful information about how soil input data could be handled in regional crop yield determinations under these conditions.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0021-8596 ISBN Medium  
  Area Expedition Conference  
  Notes CropM, LiveM, ft_macsur Approved no  
  Call Number MA @ admin @ Serial 5009  
Permanent link to this record
 

 
Author Heinschink, K.; Sinabell, F.; Url, T. url  openurl
  Title Elements of an Index-based Margin Insurance. An Application to Wheat Production in Austria Type Report
  Year 2017 Publication WIFO Working Papers Abbreviated Journal  
  Volume 536 Issue Pages 16  
  Keywords  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes TradeM Approved no  
  Call Number MA @ admin @ Serial 5016  
Permanent link to this record
 

 
Author Rusu, T.; Coste, C.L.; Moraru, P.I.; Szajdak, L.W.; Pop, A.I.; Duda, B.M. url  openurl
  Title Impact of climate change on agro-climatic indicators and agricultural lands in the Transylvanian Plain between 2008-2014 Type Journal Article
  Year 2017 Publication Carpathian Journal of Earth and Environmental Sciences Abbreviated Journal Carpathian Journal of Earth and Environmental Sciences  
  Volume 12 Issue 1 Pages 23-34  
  Keywords climate change; adaptation technologies; Transylvanian Plain  
  Abstract Integrated conservation and management of agricultural areas affected by the current global warming represents a priority at international level following the implementation of the principles of sustainable agriculture and adaptation measures. Transylvanian Plain (TP), with an area of 395,616 ha is of great agricultural importance for Romania, but with an afforestation degree of only 6.8% and numerous degradation phenomena of farmland, it has the lowest degree of sustainability to climate change. Monitoring of agro-climatic indicators and their evolution in between 2008-2014 and the analysis of the obtained data underlie the technological development of recommendations tailored to current favorable conditions for the main crops. Results obtained show that: the thermal regime of the soils in TP is of mesic type and the hydric regime is ustic; multiannual average of temperature in soil at 10 cm depth is 11.40ºC, respectively at 50 cm depth is 10.24ºC; the average yearly air temperature is 11.17ºC; multiannual average of soil moisture is 0.227 m3/m3; Multiannual average value of precipitation is 466.52 mm. During the studied period, compared with data series available (1961-1990; 1901-2000), clear decrease of the average quantities of rainfall especially during critical periods for crops, and increases in average temperatures for the entire year can be noticed. Between June and August the highest temperature difference were recorded, differences of +3.09°C to +3.65°C. There is an increase phenomenon of drought and heat; determined indicators show that most values, 61.11%, are commensurate with a semiarid climate. Aggression peaks are in February-April, July, and October-November, and for the whole period, in 19.43% of the cases are favorable and very favorable conditions for triggering erosion. Recommended agro-technical measures to limit and counteract the effects of drought, as a climatic phenomenon with major risk to agriculture in TP, refer to: i) use of a biological material resistant to water stress and heat; ii) use of management practices favorable for accumulation of, conservation and the efficient use of water from rainfall; iii) operating a system of conservation agriculture based on soil protection and desertification avoidance.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1842-4090; 1844-489x ISBN Medium  
  Area Expedition Conference  
  Notes CropM, ftnotmacsur Approved no  
  Call Number MA @ admin @ Serial 4984  
Permanent link to this record
 

 
Author Riahi, K.; van Vuuren, D.P.; Kriegler, E.; Edmonds, J.; O’Neill, B.C.; Fujimori, S.; Bauer, N.; Calvin, K.; Dellink, R.; Fricko, O.; Lutz, W.; Popp, A.; Cuaresma, J.C.; KC, S.; Leimbach, M.; Jiang, L.; Kram, T.; Rao, S.; Emmerling, J.; Ebi, K.; Hasegawa, T.; Havlik, P.; Humpenöder, F.; Da Silva, L.A.; Smith, S.; Stehfest, E.; Bosetti, V.; Eom, J.; Gernaat, D.; Masui, T.; Rogelj, J.; Strefler, J.; Drouet, L.; Krey, V.; Luderer, G.; Harmsen, M.; Takahashi, K.; Baumstark, L.; Doelman, J.C.; Kainuma, M.; Klimont, Z.; Marangoni, G.; Lotze-Campen, H.; Obersteiner, M.; Tabeau, A.; Tavoni, M. url  doi
openurl 
  Title The Shared Socioeconomic Pathways and their energy, land use, and greenhouse gas emissions implications: An overview Type Journal Article
  Year 2017 Publication Global Environmental Change Abbreviated Journal Glob. Environ. Change  
  Volume 42 Issue Pages 153-168  
  Keywords Shared Socioeconomic Pathways; SSP; Climate change; RCP; Community scenarios; Mitigation; Adaptation  
  Abstract Abstract This paper presents the overview of the Shared Socioeconomic Pathways (SSPs) and their energy, land use, and emissions implications. The SSPs are part of a new scenario framework, established by the climate change research community in order to facilitate the integrated analysis of future climate impacts, vulnerabilities, adaptation, and mitigation. The pathways were developed over the last years as a joint community effort and describe plausible major global developments that together would lead in the future to different challenges for mitigation and adaptation to climate change. The SSPs are based on five narratives describing alternative socio-economic developments, including sustainable development, regional rivalry, inequality, fossil-fueled development, and middle-of-the-road development. The long-term demographic and economic projections of the SSPs depict a wide uncertainty range consistent with the scenario literature. A multi-model approach was used for the elaboration of the energy, land-use and the emissions trajectories of SSP-based scenarios. The baseline scenarios lead to global energy consumption of 400–1200 EJ in 2100, and feature vastly different land-use dynamics, ranging from a possible reduction in cropland area up to a massive expansion by more than 700 million hectares by 2100. The associated annual CO2 emissions of the baseline scenarios range from about 25 GtCO2 to more than 120 GtCO2 per year by 2100. With respect to mitigation, we find that associated costs strongly depend on three factors: (1) the policy assumptions, (2) the socio-economic narrative, and (3) the stringency of the target. The carbon price for reaching the target of 2.6 W/m2 that is consistent with a temperature change limit of 2 °C, differs in our analysis thus by about a factor of three across the SSP marker scenarios. Moreover, many models could not reach this target from the SSPs with high mitigation challenges. While the SSPs were designed to represent different mitigation and adaptation challenges, the resulting narratives and quantifications span a wide range of different futures broadly representative of the current literature. This allows their subsequent use and development in new assessments and research projects. Critical next steps for the community scenario process will, among others, involve regional and sectoral extensions, further elaboration of the adaptation and impacts dimension, as well as employing the SSP scenarios with the new generation of earth system models as part of the 6th climate model intercomparison project (CMIP6).  
  Address 2017-06-13  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0959-3780 ISBN Medium  
  Area Expedition Conference  
  Notes TradeM, ftnotmacsur Approved no  
  Call Number MA @ admin @ Serial 5008  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: