toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Hlavinka, P.; Olesen, J.E.; Kersebaum, K.-C.; Trnka, M.; Pohankova, E.; Stella, T.; Ferrise, R.; Moriondo, M.; Hoogenbom, G.; Shelia, V.; Nendel, C.; Wimmerová, M.; Topaj, A.; Medvedev, S.; Ventrella, D.; Ruiz-Ramos, M.; Rodríguez Sánchez, A.; Takáč, J.; Patil, R.H.; Öztürk, I.; Hoffmann, M.; Gobin, A.; Rötter, R.P. url  openurl
  Title (up) Modelling long term effects of cropping and managements systems on soil organic matter, C/N dynamics and crop growth Type Report
  Year 2017 Publication FACCE MACSUR Reports Abbreviated Journal  
  Volume 10 Issue Pages C1.3-D  
  Keywords  
  Abstract While simulation of cropping systems over a few years might reflect well the short term effects of management and cultivation, long term effects on soil properties and their consequences for crop growth and matter fluxes are not captured. Especially the effect on soil carbon sequestration/depletion is addressed by this task. Simulations of an ensemble of crop models are performed as transient runs over a period of 120 year using observed weather from three stations in Czech Republic (1961-2010) and transient long time climate change scenarios (2011-2080) from five GCM of the CMIP5 ensemble to assess the effect of different cropping and management systems on carbon sequestration, matter fluxes and crop production in an integrative way. Two cropping systems are regarded comprising two times winter wheat, silage maize, spring barley and oilseed rape. Crop rotations differ regarding their organic input from crop residues, nitrogen fertilization and implementation of catch crops. Models are applied for two soil types with different water holding capacity. Cultivation and nutrient management is adapted using management rules related to weather and soil conditions. Data of phenology and crop yield from the region of the regarded crops were provided to calibrate the models for crops of the rotations. Twelve models were calibrated in this first step. For the transient long term runs results of four models were submitted so far. Outputs are crop yields, nitrogen uptake, soil water and mineral nitrogen contents, as well as water and nitrogen fluxes to the atmosphere and groundwater. Changes in the carbon stocks and the consequences for nitrogen mineralisation, N fertilization and emissions also considered.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes XC Approved no  
  Call Number MA @ admin @ Serial 4976  
Permanent link to this record
 

 
Author van Middelkoop, J.C.; Kipling, R.P. url  openurl
  Title (up) Modelling the impact of climate change on livestock productivity at the farm-scale: An inventory of LiveM outcomes Type Report
  Year 2017 Publication FACCE MACSUR Reports Abbreviated Journal  
  Volume 10 Issue Pages L2.4-D  
  Keywords  
  Abstract The report presented here provides an inventory of reports and conference papers  produced by the partners of the livestock and grassland modelling theme (LiveM) of the  Modelling European Agriculture with Climate Change for Food Security (MACSUR)  knowledge hub. The findings presented illustrate the diverse nature of the multidisciplinary  LiveM research community, and provide a reference source for those seeking  to identify and pull out farm-level modelling outputs from the work of MACSUR and its  partners. The survey of farm-scale outputs from LiveM revealed the interdependent, dual  role of a knowledge hub: to increase the capacity of modelling to meet stakeholder and  societal needs under climate change, and to apply that increased capacity to provide new  understanding and solutions at the policy and (the focus here) farm scale. While capacity  building work across disciplines is time-consuming, difficult, and to a large extent invisible  to stakeholders, such work is vital to ensuring that subsequent scientific outcomes reflect  best practice, and integrated expertise. Long term, sustained funding of network-based  capacity building activities is highlighted as essential to ensuring that the farm-scale  modelling work highlighted here can continue to build on ongoing improvements in model  quality, flexibility and stakeholder relevance.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes LiveM Approved no  
  Call Number MA @ admin @ Serial 4958  
Permanent link to this record
 

 
Author Klosterhalfen, A.; Herbst, M.; Weihermueller, L.; Graf, A.; Schmidt, M.; Stadler, A.; Schneider, K.; Subke, J.-A.; Huisman, J.A.; Vereecken, H. doi  openurl
  Title (up) Multi-site calibration and validation of a net ecosystem carbon exchange model for croplands Type Journal Article
  Year 2017 Publication Ecological Modelling Abbreviated Journal Ecol. Model.  
  Volume 363 Issue Pages 137-156  
  Keywords AgroC; Soil respiration; Carbon balance; Winter wheat; Grassland; NEE; LOLIUM-PERENNE L; SOIL HETEROTROPHIC RESPIRATION; LAND-SURFACE MODELS; EDDY-COVARIANCE; WINTER-WHEAT; CARBOHYDRATE CONTENT; TURNOVER MODEL; ROTHC MODEL; ROOT RATIOS; CO2 EFFLUX  
  Abstract Croplands play an important role in the carbon budget of many regions. However, the estimation of their carbon balance remains difficult due to diversity and complexity of the processes involved. We report the coupling of a one-dimensional soil water, heat, and CO2 flux model (SOILCO2), a pool concept of soil carbon turnover (RothC), and a crop growth module (SUCROS) to predict the net ecosystem exchange (NEE) of carbon. The coupled model, further referred to as AgroC, was extended with routines for managed grassland as well as for root exudation and root decay. In a first step, the coupled model was applied to two winter wheat sites and one upland grassland site in Germany. The model was calibrated based on soil water content, soil temperature, biometric, and soil respiration measurements for each site, and validated in terms of hourly NEE measured with the eddy covariance technique. The overall model performance of AgroC was sufficient with a model efficiency above 0.78 and a correlation coefficient above 0.91 for NEE. In a second step, AgroC was optimized with eddy covariance NEE measurements to examine the effect of different objective functions, constraints, and data-transformations on estimated NEE. It was found that NEE showed a distinct sensitivity to the choice of objective function and the inclusion of soil respiration data in the optimization process. In particular, both positive and negative day- and nighttime fluxes were found to be sensitive to the selected optimization strategy. Additional consideration of soil respiration measurements improved the simulation of small positive fluxes remarkably. Even though the model performance of the selected optimization strategies did not diverge substantially, the resulting cumulative NEE over simulation time period differed substantially. Therefore, it is concluded that data transformations, definitions of objective functions, and data sources have to be considered cautiously when a terrestrial ecosystem model is used to determine NEE by means of eddy covariance measurements. (C) 2017 Elsevier B.V. All rights reserved.  
  Address 2017-11-09  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0304-3800 ISBN Medium  
  Area Expedition Conference  
  Notes CropM, ft_MACSUR Approved no  
  Call Number MA @ admin @ Serial 5216  
Permanent link to this record
 

 
Author Brilli, L.; Ferrise, R.; Dibari, C.; Bindi, M.; Bellocchi, G. url  openurl
  Title (up) Needs on model improvement Type Report
  Year 2017 Publication FACCE MACSUR Reports Abbreviated Journal  
  Volume 10 Issue Pages XC1.1-D  
  Keywords  
  Abstract The need to answer new scientific questions can be satisfied by an increased knowledge of physiological mechanisms which, in turn, can be used for improving the accuracy of simulations of process-based models. In this context, this report highlights areas that need to be further improved to facilitate the operational use of simulation models. It describes missing approaches within simulation models which, if implemented, would likely improve the representation of the dynamics of processes underlying different compartments of crop and grassland systems (e.g. plant growth and development, yield production, GHG emissions), as well as of the livestock production systems.  The following rationale has been used in the organization of this report. We first briefly introduced the need to improve the reliability of existing models. Then, we indicated climate change and its influence on the global carbon balance as the main issue to be addressed by existing crop and grassland (section 2), and livestock (section 3) models. In section 2, among the major aspects that if implemented may reduce the uncertainty inherent to model outputs, we suggested: i) quantifying the effects of climate extremes on biological systems; ii) modelling of multi-species sward; iii) coupling of pest and disease sub-models; iv) improvement of the carry-over effect. In section 3, as the most important aspects to consider in livestock models we indicated: i) impacts and dynamics of pathogens and disease; ii) heat stress effects on livestock; iii) effects on grassland productivity and nutritional values; iv) improvement of GHG emissions dynamics.  In Section 4, remarks are made concerning the need to implement the suggested aspects into the existing models.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number MA @ admin @ Serial 4938  
Permanent link to this record
 

 
Author Reidsma, P.; Janssen, S.; Jansen, J.; van Ittersum, M. doi  openurl
  Title (up) On the development and use of farm models for policy impact assessment in the European Union – A review Type Journal Article
  Year 2017 Publication Agricultural Systems Abbreviated Journal Agric. Syst.  
  Volume 159 Issue Pages 111-125  
  Keywords  
  Abstract • Evidence use in EU Impact Assessment reports is limited. • Many scientific studies used farm models for assessment of policies in the EU. • Scientific challenges include understanding farmer decision-making and interactions. • Model codes and data should be published, including evaluation. • Stronger science-policy interaction is required. Farm models are potentially relevant tools for policy impact assessment. Governments and international organizations use impact assessment (IA) as an ex-ante policy process and procedure to evaluate impacts of policy options as part of the introduction of new policies. IA is increasingly used. This paper reviews both the use of farm models in such policy IAs in the European Commission, and the development and use of farm models for policy IA by the scientific community over the past decade. A systematic review was performed, based on 202 studies from the period 2007–2015 and results were discussed in a science-policy workshop. Based on the literature review and the workshop, this paper describes progress in the development of farm models, challenges in their use in policy processes and a research and cooperation agenda. We conclude that main issues for a research agenda include: 1) better understanding of farmer decision-making and effects of the social milieu, with increased focus on the interactions between farmers and other actors, the link to the value chain, and farm structural change; 2) thorough and consistent model evaluation and model comparison, with increased attention for model sensitivity and uncertainty, and 3) the organization of a network of farm modellers. In addition, the agenda for science-policy cooperation emphasizes the need for: 4) synthesizing research evidence into systematic reviews as an institutional element in the existing science-policy-interfaces for agricultural systems, 5) improved and timely data collection, allowing to assess heterogeneity in farm objectives, management and indicators, and 6) stronger science-policy interaction, moving from a research-driven to a user-driven approach.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes LiveM, ftnotmacsur Approved no  
  Call Number MA @ admin @ Serial 5179  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: