|   | 
Details
   web
Records
Author Hoffmann, M.P.; Haakana, M.; Asseng, S.; Höhn, J.G.; Palosuo, T.; Ruiz-Ramos, M.; Fronzek, S.; Ewert, F.; Gaiser, T.; Kassie, B.T.; Paff, K.; Rezaei, E.E.; Rodríguez, A.; Semenov, M.; Srivastava, A.K.; Stratonovitch, P.; Tao, F.; Chen, Y.; Rötter, R.P.
Title (up) How does inter-annual variability of attainable yield affect the magnitude of yield gaps for wheat and maize? An analysis at ten sites Type Journal Article
Year 2017 Publication Agricultural Systems Abbreviated Journal Agric. Syst.
Volume 159 Issue Pages 199-208
Keywords
Abstract Highlights • The larger simulated attainable yield for a specific crop season, the larger the yield gap. • Average size of the yield gap is not affected by the inter-annual variability of attainable yield. • Technology levels (resource input and accessibility) determine average yield gap. • To reduce yield gaps in rainfed environments, farmers need to improve season-specific crop management. Abstract Provision of food security in the face of increasing global food demand requires narrowing of the gap between actual farmer’s yield and maximum attainable yield. So far, assessments of yield gaps have focused on average yield over 5–10 years, but yield gaps can vary substantially between crop seasons. In this study we hypothesized that climate-induced inter-annual yield variability and associated risk is a major barrier for farmers to invest, i.e. increase inputs to narrow the yield gap. We evaluated the importance of inter-annual attainable yield variability for the magnitude of the yield gap by utilizing data for wheat and maize at ten sites representing some major food production systems and a large range of climate and soil conditions across the world. Yield gaps were derived from the difference of simulated attainable yields and regional recorded farmer yields for 1981 to 2010. The size of the yield gap did not correlate with the amplitude of attainable yield variability at a site, but was rather associated with the level of available resources such as labor, fertilizer and plant protection inputs. For the sites in Africa, recorded yield reached only 20% of the attainable yield, while for European, Asian and North American sites it was 56–84%. Most sites showed that the higher the attainable yield of a specific season the larger was the yield gap. This significant relationship indicated that farmers were not able to take advantage of favorable seasonal weather conditions. To reduce yield gaps in the different environments, reliable seasonal weather forecasts would be required to allow farmers to manage each seasonal potential, i.e. overcoming season-specific yield limitations.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language phase 2+ Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0308521x ISBN Medium
Area Expedition Conference
Notes CropM, ft_macsur Approved no
Call Number MA @ admin @ Serial 5185
Permanent link to this record
 

 
Author Gabaldón-Leal, C.; Ruiz-Ramos, M.; de la Rosa, R.; León, L.; Belaj, A.; Rodríguez, A.; Santos, C.; Lorite, I.J.
Title (up) Impact of changes in mean and extreme temperatures caused by climate change on olive flowering in southern Spain: IMPACT OF CLIMATE CHANGE ON OLIVE FLOWERING IN SOUTHERN SPAIN Type Journal Article
Year 2017 Publication International Journal of Climatology Abbreviated Journal Int. J. Climatol.
Volume Issue Pages 867
Keywords
Abstract Due to the severe increase projected in future temperatures and the great economic and social importance of olive growing for vast agricultural areas in the Mediterranean Basin, accurate climate change impact assessment on olive orchards is required. The aim of this study is to assess the flowering date and the impact of mean and extreme temperature events on olive flowering in southern Spain under baseline and future climate conditions. To that end, experimental data were obtained from ten olive genotypes: six well-known olive cultivars in the region, one cultivar, ‘Chiquitita’, obtained via conventional breeding, and three wild olives from the Canary Islands. A site-specific model calibration was conducted resulting in satisfactory performance with an average error of 2 days for flowering date estimation under baseline and future climate conditions, and a RMSE equal to 5.5 days in the validation process. The outputs from 12 regional climate models from the ENSEMBLES European project with a bias correction in temperature and precipitation were used. Results showed an advance in the olive flowering dates of about 17 days at the end of the 21st century compared with the baseline period (1981–2010), and an increase in the frequency of extreme events around the flowering period. A spatial analysis of results identified the areas in southern Spain that are most vulnerable to climate change impact caused by the lack of chilling hours accumulation (areas located on the Atlantic coast and the south-eastern coast) and by the occurrence of high temperatures during the flowering period (areas located in the north and north-eastern areas of the Andalusian region).
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0899-8418 ISBN Medium
Area Expedition Conference
Notes CropM, ft_macsur Approved no
Call Number MA @ admin @ Serial 4994
Permanent link to this record
 

 
Author Rusu, T.; Coste, C.L.; Moraru, P.I.; Szajdak, L.W.; Pop, A.I.; Duda, B.M.
Title (up) Impact of climate change on agro-climatic indicators and agricultural lands in the Transylvanian Plain between 2008-2014 Type Journal Article
Year 2017 Publication Carpathian Journal of Earth and Environmental Sciences Abbreviated Journal Carpathian Journal of Earth and Environmental Sciences
Volume 12 Issue 1 Pages 23-34
Keywords climate change; adaptation technologies; Transylvanian Plain
Abstract Integrated conservation and management of agricultural areas affected by the current global warming represents a priority at international level following the implementation of the principles of sustainable agriculture and adaptation measures. Transylvanian Plain (TP), with an area of 395,616 ha is of great agricultural importance for Romania, but with an afforestation degree of only 6.8% and numerous degradation phenomena of farmland, it has the lowest degree of sustainability to climate change. Monitoring of agro-climatic indicators and their evolution in between 2008-2014 and the analysis of the obtained data underlie the technological development of recommendations tailored to current favorable conditions for the main crops. Results obtained show that: the thermal regime of the soils in TP is of mesic type and the hydric regime is ustic; multiannual average of temperature in soil at 10 cm depth is 11.40ºC, respectively at 50 cm depth is 10.24ºC; the average yearly air temperature is 11.17ºC; multiannual average of soil moisture is 0.227 m3/m3; Multiannual average value of precipitation is 466.52 mm. During the studied period, compared with data series available (1961-1990; 1901-2000), clear decrease of the average quantities of rainfall especially during critical periods for crops, and increases in average temperatures for the entire year can be noticed. Between June and August the highest temperature difference were recorded, differences of +3.09°C to +3.65°C. There is an increase phenomenon of drought and heat; determined indicators show that most values, 61.11%, are commensurate with a semiarid climate. Aggression peaks are in February-April, July, and October-November, and for the whole period, in 19.43% of the cases are favorable and very favorable conditions for triggering erosion. Recommended agro-technical measures to limit and counteract the effects of drought, as a climatic phenomenon with major risk to agriculture in TP, refer to: i) use of a biological material resistant to water stress and heat; ii) use of management practices favorable for accumulation of, conservation and the efficient use of water from rainfall; iii) operating a system of conservation agriculture based on soil protection and desertification avoidance.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1842-4090; 1844-489x ISBN Medium
Area Expedition Conference
Notes CropM, ftnotmacsur Approved no
Call Number MA @ admin @ Serial 4984
Permanent link to this record
 

 
Author Persson, T.; Kværnø, S.
Title (up) Impact of projected mid-21st century climate and soil extrapolation on simulated spring wheat grain yield in Southeastern Norway Type Journal Article
Year 2017 Publication Journal of Agricultural Science Abbreviated Journal J. Agric. Sci.
Volume 155 Issue 03 Pages 361-377
Keywords
Abstract The effects of soil variability on regional crop yield under projected climate change are largely unknown. In Southeastern Norway, increased temperature and precipitation are projected for the mid-21st century. Crop simulation models in combination with scaling techniques can be used to determine the regional pattern of crop yield. In the present paper, the CSM-CROPSIM-CERES-Wheat model was applied to simulate regional spring wheat yield for Akershus and Østfold counties in Southeastern Norway. Prior to the simulations, parameters in the CSM-CROPSIM-CERES-Wheat model were calibrated for the spring wheat cvars Zebra, Demonstrant and Bjarne, using cultivar trial data from Southeastern Norway and site-specific weather and soil information. Weather input data for regional yield simulations represented the climate in 1961–1990 and projections of the climate in 2046–2065. The latter were based on four Global Climate Models and greenhouse gas emission scenario A1B in the IPCC 4th Assessment Report. Data on regional soil particle size distribution, water-holding characteristics and organic matter data were obtained from a database. To determine the simulated grain yield sensitivity to soil input, the number of soil profiles used to describe the soilscape in the region varied from 76 to 16, 5 and 1. The soils in the different descriptions were selected by arranging them into groups according to similarities in physical characteristics and taking the soil in each group occupying the largest area in the region to represent other soils in that group. The simulated grain yields were higher under all four projected future climate scenarios than the corresponding average yields in the baseline conditions. On average across the region, there were mostly non-significant differences in grain yield between the soil extrapolations for all cultivars and climate projections. However, for sub-regions grain yield varied by up to 20% between soil extrapolations. These results indicate how projected climate change could affect spring wheat yield given the assumed simulated conditions for a region with similar climate and soil conditions to many other cereal production regions in Northern Europe. The results also provide useful information about how soil input data could be handled in regional crop yield determinations under these conditions.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0021-8596 ISBN Medium
Area Expedition Conference
Notes CropM, LiveM, ft_macsur Approved no
Call Number MA @ admin @ Serial 5009
Permanent link to this record
 

 
Author Gutierrez, L.
Title (up) Impacts of El Niño-Southern Oscillation on the wheat market: A global dynamic analysis Type Journal Article
Year 2017 Publication PLoS One Abbreviated Journal PLoS One
Volume 12 Issue 6 Pages e0179086
Keywords
Abstract Although the widespread influence of the El Niño-Southern Oscillation (ENSO) occurrences on crop yields of the main agricultural commodities is well known, the global socio-economic consequences of ENSO still remain uncertain. Given the global importance of wheat for global consumption by providing 20% of global calories and nourishment, the monitoring and prediction of ENSO-induced variations in the worldwide wheat market are essential for allowing national governments to manage the associated risks and to ensure the supplies of wheat for consumers, including the underprivileged. To this end, we propose a global dynamic model for the analysis of ENSO impacts on wheat yield anomalies, export prices, exports and stock-to-use ratios. Our framework focuses on seven countries/regions: the six main wheat-exporting countries-the United States, Argentina, Australia, Canada, the EU, and the group of the main Black Sea export countries, i.e. Russia, Ukraine, and Kazakhstan-plus the rest of the world. The study shows that La Niña exerts, on average, a stronger and negative impact on wheat yield anomalies, exports and stock-to-use ratios than El Niño. In contrast, wheat export prices are positively related to La Niña occurrences evidencing, once again, its steady impact in both the short and long run. Our findings emphasize the importance of the two ENSO extreme phases for the worldwide wheat market.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1932-6203 ISBN Medium article
Area Expedition Conference
Notes TradeM, ft_macsur Approved no
Call Number MA @ admin @ Serial 4971
Permanent link to this record