toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Trnka, M.; Hlavinka, P.; Wimmerová, M.; Pohanková, E.; Rötter, R.; Olesen, J.E.; Kersebaum, K.-C.; Semenov, M. url  openurl
  Title Paper on model responses to selected adverse weather conditions Type Report
  Year 2017 Publication FACCE MACSUR Reports Abbreviated Journal  
  Volume 10 Issue Pages C1.2-D  
  Keywords  
  Abstract Based on the Trnka et al. (2015) study that indicated that heat and drought will be the most important stress factors for most of the European what area the further effort focused on these two extremes. The crop model HERMES has been tested for its ability to replicate correctly drought stress, heat stress and combination of both stresses. While data on the drought stress were available for both field and growth chambers, heat stress and its combination with heat stress was available only for the growth chambers. The modified version of the HERMES crop model was developed by Dr. Kersebaum and is being currently prepared for the journal paper publication.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language (up) Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes CropM Approved no  
  Call Number MA @ admin @ Serial 4954  
Permanent link to this record
 

 
Author Ruiz-Ramos, M.; Ferrise, R.; Rodríguez, A.; Lorite, I.J.; Bindi, M.; Carter, T.R.; Fronzek, S.; Palosuo, T.; Pirttioja, N.; Baranowski, P.; Buis, S.; Cammarano, D.; Chen, Y.; Dumont, B.; Ewert, F.; Gaiser, T.; Hlavinka, P.; Hoffmann, H.; Höhn, J.G.; Jurecka, F.; Kersebaum, H.-C.; Krzyszczak, J.; Lana, M.; Mechiche-Alami, A.; Minet, J.; Montesino, M.; Nendel, C.; Porter, J.R.; Ruget, F.; Semenov, M.A.; Steinmetz, Z.; Stratonovitch, P.; Supit, I.; Tao, F.; Trnka, M.; de Wit, A.; Rötter, R.P. url  openurl
  Title Applying adaptation response surfaces for managing wheat under perturbed climate and elevated CO2 in a Mediterranean environment Type Report
  Year 2017 Publication FACCE MACSUR Reports Abbreviated Journal  
  Volume Issue Pages C4.4-D  
  Keywords  
  Abstract This study developed Adaptation Response Surfaces and applied them to a study case in North East Spain on winter crops adaptation, using rainfed winter wheat as reference crop.  Crop responses to perturbed temperature, precipitation and CO2 were simulated by an ensemble of crop models. A set of combined changes on cultivars (on vernalisation requirements and phenology) and management (on sowing date and irrigation) were considered as adaptation options and simulated by the crop model ensemble. The discussion focused on two main issues: 1) the recommended adaptation options for different soil types and perturbation levels, and 2) the need of applying our current knowledge (AOCK) when building a crop model ensemble. The study has been published Agricultural Systems (Available online 25 January 2017, https://doi.org/10.1016/j.agsy.2017.01.009 ), and the  text below consists on extracts from that paper.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language (up) Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes CropM Approved no  
  Call Number MA @ admin @ Serial 4955  
Permanent link to this record
 

 
Author Fronzek, S.; Pirttioja, N.; Carter, T.R.; Bindi, M.; Hoffmann, H.; Palosuo, T.; Ruiz-Ramos, M.; Tao, F.; Trnka, M.; Acutis, M.; Asseng, S.; Baranowski, P.; Basso, B.; Bodin, P.; Buis, S.; Cammarano, D.; Deligios, P.; Destain, M.-F.; Dumont, B.; Ewert, F.; Ferrise, R.; François, L.; Gaiser, T.; Hlavinka, P.; Jacquemin, I.; Kersebaum, K.-C.; Kollas, C.; Krzyszczak, J.; Lorite, I.J.; Minet, J.; Minguez, M.I.; Montesino, M.; Moriondo, M.; Müller, C.; Nendel, C.; Öztürk, I.; Perego, A.; Rodríguez, A.; Ruane, A.C.; Ruget, F.; Sanna, M.; Semenov, M.A.; Slawinsky, C.; Stratonovitch, P.; Supit, I.; Waha, K.; Wang, E.; Wu, L.; Zhao, Z.; Rötter, R.P. url  openurl
  Title Classifying multi-model wheat yield impact response surfaces showing sensitivity to temperature and precipitation change Type Report
  Year 2017 Publication FACCE MACSUR Reports Abbreviated Journal  
  Volume 10 Issue Pages C4.3-D1  
  Keywords  
  Abstract Crop growth simulation models can differ greatly in their treatment of key processes and hence in their response to environmental conditions. Here, we used an ensemble of 26 process-based wheat models applied at sites across a European transect to compare their sensitivity to changes in temperature (−2 to +9°C) and precipitation (−50 to +50%). Model results were analysed by plotting them as impact response surfaces (IRSs), classifying the IRS patterns of individual model simulations, describing these classes and analysing factors that may explain the major differences in model responses.   The model ensemble was used to simulate yields of winter and spring wheat at sites in Finland, Germany and Spain. Results were plotted as IRSs that show changes in yields relative to the baseline with respect to temperature and precipitation. IRSs of 30-year means and selected extreme years were classified using two approaches describing their pattern.   The expert diagnostic approach (EDA) combines two aspects of IRS patterns: location of the maximum yield (nine classes, Figure 1) and strength of the yield response with respect to climate (four classes), resulting in a total of 36 combined classes defined using criteria pre-specified by experts. The statistical diagnostic approach (SDA) groups IRSs by comparing their pattern and magnitude, without attempting to interpret these features. It applies a hierarchical clustering method, grouping response patterns using a distance metric that combines the spatial correlation and Euclidian distance between IRS pairs. The two approaches were used to investigate whether different patterns of yield response could be related to different properties of the crop models, specifically their genealogy, calibration and process description.   Although no single model property across a large model ensemble was found to explain the integrated yield response to temperature and precipitation perturbations, the application of the EDA and SDA approaches revealed their capability to distinguish: (i) stronger yield responses to precipitation for winter wheat than spring wheat; (ii) differing strengths of response to climate changes for years with anomalous weather conditions compared to period-average conditions; (iii) the influence of site conditions on yield patterns; (iv) similarities in IRS patterns among models with related genealogy; (v) similarities in IRS patterns for models with simpler process descriptions of root growth and water uptake compared to those with more complex descriptions; and (vi) a closer correspondence of IRS patterns in models using partitioning schemes to represent yield formation than in those using a harvest index.   Such results can inform future crop modelling studies that seek to exploit the diversity of multi-model ensembles, by distinguishing ensemble members that span a wide range of responses as well as those that display implausible behaviour or strong mutual similarities.   The full manuscript of this study is currently under revision (Fronzek et al. 2017).  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language (up) Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes CropM Approved no  
  Call Number MA @ admin @ Serial 4956  
Permanent link to this record
 

 
Author Höglind, M.; the partners of LiveM task L1.3 url  openurl
  Title Bringing together grassland and farm scale modelling. Part 1. Characterizing grasslands in farm scale modelling Type Report
  Year 2017 Publication FACCE MACSUR Reports Abbreviated Journal  
  Volume 10 Issue Pages L1.3-D  
  Keywords  
  Abstract This report provides an overview of how grasslands are represented in six different farmscale  models represented in MACSUR. A survey was conducted, followed by a workshop in  which modellers discussed the results of the survey, and identified research challenges and  knowledge gaps. The workshop was attended by grassland as well as livestock specialists.  The investigated models differed largely with respect to how grasslands were represented,  e.g. as regards weather and management factors accounted for, spatial and temporal  resolution, and output variables. All models had grassland modules that simulate DM yield  and herbage N content (or crude protein (CP) content = N content x 6.25). Many models  also simulate P content, whereas only one simulate K content. About half of the model  simulate herbage energy value and/or herbage fibre content and fibre and/or dry matter  digestibility. Critical input data required from grassland models to simulate ruminant  productivity and GHG emissions at farm scale was identified by the workshop participants.  The different types of input data required were ranked in order of importance as regards  their influence on important system outputs. For simulation of ruminant productivity and  GHG emissions, herbage DM yield was ranked as the most important input variable from  grassland models, followed by CP content together with at least one variable describing  herbage fibre characteristics. These findings suggest that work on improving the ability of  the current grassland models with respect to simulation of fibre/energy should be  prioritized in farm-scale modelling aiming at quantifying livestock production and GHG  emissions under different management regimes and climate conditions. More work is also needed on model evaluation, a task that has not been prioritized yet for some models.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language (up) Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes LiveM Approved no  
  Call Number MA @ admin @ Serial 4957  
Permanent link to this record
 

 
Author van Middelkoop, J.C.; Kipling, R.P. url  openurl
  Title Modelling the impact of climate change on livestock productivity at the farm-scale: An inventory of LiveM outcomes Type Report
  Year 2017 Publication FACCE MACSUR Reports Abbreviated Journal  
  Volume 10 Issue Pages L2.4-D  
  Keywords  
  Abstract The report presented here provides an inventory of reports and conference papers  produced by the partners of the livestock and grassland modelling theme (LiveM) of the  Modelling European Agriculture with Climate Change for Food Security (MACSUR)  knowledge hub. The findings presented illustrate the diverse nature of the multidisciplinary  LiveM research community, and provide a reference source for those seeking  to identify and pull out farm-level modelling outputs from the work of MACSUR and its  partners. The survey of farm-scale outputs from LiveM revealed the interdependent, dual  role of a knowledge hub: to increase the capacity of modelling to meet stakeholder and  societal needs under climate change, and to apply that increased capacity to provide new  understanding and solutions at the policy and (the focus here) farm scale. While capacity  building work across disciplines is time-consuming, difficult, and to a large extent invisible  to stakeholders, such work is vital to ensuring that subsequent scientific outcomes reflect  best practice, and integrated expertise. Long term, sustained funding of network-based  capacity building activities is highlighted as essential to ensuring that the farm-scale  modelling work highlighted here can continue to build on ongoing improvements in model  quality, flexibility and stakeholder relevance.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language (up) Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes LiveM Approved no  
  Call Number MA @ admin @ Serial 4958  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: